AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-supporting Co0.85Se nanosheets anchored on Co plate as highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media

Rong Qin1Jiagang Hou2Caixia Xu1( )Hongxiao Yang1Qiuxia Zhou1Zizhong Chen1Hong Liu1,3( )
Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China
Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Show Author Information

Graphical Abstract

Abstract

Electrocatalytic water splitting via hydrogen evolution reaction (HER) represents one of promising strategies to gain hydrogen energy. In current work, self-supporting Co0.85Se nanosheets network anchored on Co plate (Co0.85Se NSs@Co) is fabricated by employing easily tailorable Co metal plate as the source conductive substrate. The scalable dealloying and hydrothermal selenization strategy was employed to build one layer of three dimensional interlinking Co0.85Se nanosheets network on the surface of Co plate. Benefiting from bulky integrated architecture and rich active sites, the as-made Co0.85Se NSs@Co exhibits superior electrocatalytic activity and long-term catalytic durability toward HER. It only requires lower overpotentials of 121 and 162 mV to drive the current density of 10 mA·cm-2 for hydrogen evolution in 0.5 M H2SO4 and 1 M KOH solution. Especially, no evident activity decay occurs upon 1,500 cycles or continuous test for 20 h at 10 mA·cm-2 in both acidic and alkaline electrolytes. With the merits of exceptional performances, scalable production, and low cost, the self-supporting Co0.85Se NSs@Co holds prospective application potential as stable and binder-free electrocatalysts for hydrogen generation in a wide range of electrolyte.

Electronic Supplementary Material

Download File(s)
12274_2020_2952_MOESM1_ESM.pdf (5 MB)

References

[1]
Li, Y.; Cai, P. W.; Ci, S. Q.; Wen, Z. H. Strongly coupled 3D nanohybrids with Ni2P/carbon-nanosheets as pH-universal hydrogen evolution reaction electrocatalysts. ChemElectroChem 2017, 4, 340-344.
[2]
Guo, X.; Li, M. G.; Liu, Y. Q.; Huang, Y. R.; Geng, S.; Yang, W. W.; Yu, Y. S. Hierarchical core-shell electrode with NiWO4 nanoparticles wrapped MnCo2O4 nanowire arrays on Ni foam for high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 2020, 563, 405-413.
[3]
Wang, Y. P.; Ma, B.; Chen, Y. T. Iron phosphides supported on three-dimensional iron foam as an efficient electrocatalyst for water splitting reactions. J. Mater. Sci. 2019, 54, 14872-14883.
[4]
Zhang, J.; Dong, C. Q.; Wang, Z. B.; Zhang, C.; Gao, H.; Niu, J. Z.; Zhang, Z. H. Flexible, self-supported hexagonal β-Co(OH)2 nanosheet arrays as integrated electrode catalyzing oxygen evolution. Electrochim. Acta 2018, 284, 495-503.
[5]
Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086-16090.
[6]
Hou, L. R.; Chen, Z. Y.; Zhao, Z. W.; Sun, X.; Zhang, J. Y.; Yuan, C. Z. Universal FeCl3-activating strategy for green and scalable fabrication of sustainable biomass-derived hierarchical porous nitrogen-doped carbons for electrochemical supercapacitors. ACS Appl. Energy Mater. 2019, 2, 548-557.
[7]
Xu, Y. T.; Xiao, X. F.; Ye, Z. M.; Zhao, S. L.; Shen, R. A.; He, C. T.; Zhang, J. P.; Li, Y. D.; Chen, X. M. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 5285-5288.
[8]
Geng, S.; Liu, Y. Q.; Yu, Y. S.; Yang, W. W.; Li, H. B. Engineering defects and adjusting electronic structure on S doped MoO2 nanosheets toward highly active hydrogen evolution reaction. Nano Res. 2020, 13, 121-126.
[9]
Geng, S.; Yang, W. W.; Yu, Y. S. Building MoS2/S-doped g-C3N4 layered heterojunction electrocatalysts for efficient hydrogen evolution reaction. J. Catal. 2019, 375, 441-447.
[10]
Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.
[11]
Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859-12863.
[12]
Xu, C. L.; Ming, M.; Wang, Q.; Yang, C.; Fan, G. Y.; Wang, Y.; Gao, D. J.; Bi, J.; Zhang, Y. Facile synthesis of effective Ru nanoparticles on carbon by adsorption-low temperature pyrolysis strategy for hydrogen evolution. J. Mater. Chem. A 2018, 6, 14380-14386.
[13]
Singh, N.; Gordon, M.; Metiu, H.; McFarland, E. Doped rhodium sulfide and thiospinels hydrogen evolution and oxidation electrocatalysts in strong acid electrolytes. J. Appl. Electrochem. 2016, 46, 497-503.
[14]
Huang, Y. R.; Li, M. G.; Yang, W. W.; Yu, Y. S.; Hao, S. 3D ordered mesoporous cobalt ferrite phosphides for overall water splitting. Sci. China Mater. 2020, 63, 240-248.
[15]
Yang, J.; Zhang, F. J.; Wang, X.; He, D. S.; Wu, G.; Yang, Q. H.; Hong, X.; Wu, Y. E.; Li, Y. D. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12854-12858.
[16]
Wang, X. Q.; Zheng, B. J.; Yu, B.; Wang, B.; Hou, W. Q.; Zhang, W. L.; Chen, Y. F. In situ synthesis of hierarchical MoSe2-CoSe2 nanotubes as an efficient electrocatalyst for the hydrogen evolution reaction in both acidic and alkaline media. J. Mater. Chem. A 2018, 6, 7842-7850.
[17]
Chen, W. F.; Wang, C. H.; Sasaki, K.; Marinkovic, N.; Xu, W.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 2013, 6, 943-951.
[18]
Chen, W. F.; Iyer, S.; Iyer, S.; Sasaki, K.; Wang, C. H.; Zhu, Y. M.; Muckerman, J. T.; Fujita, E. Biomass-derived electrocatalytic composites for hydrogen evolution. Energy Environ. Sci. 2013, 6, 1818-1826.
[19]
Ge, Y. C.; Dong, P.; Craig, S. R.; Ajayan, P. M.; Ye, M. X.; Shen, J. F. Transforming nickel hydroxide into 3D prussian blue analogue array to obtain Ni2P/Fe2P for efficient hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1800484.
[20]
Wang, X. Q.; Chen, Y. F.; Qi, F.; Zheng, B. J.; He, J. R.; Li, Q.; Li, P. J.; Zhang, W. L.; Li, Y. R. Interwoven WSe2/CNTs hybrid network: A highly efficient and stable electrocatalyst for hydrogen evolution. Electrochem. Commun. 2016, 72, 74-78.
[21]
Wang, X. Q.; Chen, Y. F.; Zheng, B. J.; Qi, F.; He, J. R.; Li, Q.; Li, P. J.; Zhang, W. L. Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution. J. Alloy. Compd. 2017, 691, 698-704.
[22]
Yu, B.; Wang, X. Q.; Qi, F.; Zheng, B. J.; He, J. R.; Lin, J.; Zhang, W. L.; Li, Y. R.; Chen, Y. F. Self-assembled coral-like hierarchical architecture constructed by NiSe2 nanocrystals with comparable hydrogen-evolution performance of precious platinum catalyst. ACS Appl. Mater. Interfaces 2017, 9, 7154-7159.
[23]
Yu, B.; Qi, F.; Chen, Y. F.; Wang, X. Q.; Zheng, B. J.; Zhang, W. L.; Li, Y. R.; Zhang, L. C. Nanocrystalline Co0.85Se anchored on graphene nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 30703-30710.
[24]
Wang, H. Q.; Wang, X. Q.; Yang, D. X.; Zheng, B. J.; Chen, Y. F. Co0.85Se hollow nanospheres anchored on N-doped graphene nanosheets as highly efficient, nonprecious electrocatalyst for hydrogen evolution reaction in both acid and alkaline media. J. Power Sources 2018, 400, 232-241.
[25]
Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807-5813.
[26]
Sun, W. Y.; Li, P.; Liu, X.; Shi, J. J.; Sun, H. M.; Tao, Z. L.; Li, F. J.; Chen, J. Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries. Nano Res. 2017, 10, 2210-2222.
[27]
Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28-46.
[28]
Xia, H. C.; Xu, Q.; Zhang, J. N. Recent progress on two-dimensional nanoflake ensembles for energy storage applications. Nano-Micro Lett. 2018, 10, 66.
[29]
Hao, Q.; Zhao, D. Y.; Duan, H. M.; Xu, C. X. Porous Co3O4/CuO composite assembled from nanosheets as high-performance anodes for lithium-ion batteries. ChemSusChem 2015, 8, 1435-1441.
[30]
Hao, Q.; Yu, Y.; Zhao, D. Y.; Xu, C. X. Composited Co3O4/Ag with flower-like nanosheets anchored on a porous substrate as a high- performance anode for Li-ion batteries. J. Mater. Chem. A 2015, 3, 15944-15950.
[31]
Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053-10061.
[32]
Gong, F.; Wang, H.; Xu, X.; Zhou, G.; Wang, Z. S. In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 2012, 134, 10953-10958.
[33]
Yang, J.; Yuan, Y. L.; Wang, W. C.; Tang, H. C.; Ye, Z. Z.; Lu, J. G. Interconnected Co0.85Se nanosheets as cathode materials for asymmetric supercapacitors. J. Power Sources 2017, 340, 6-13.
[34]
Xu, C. X.; Liu, Y. Q.; Zhou, C.; Wang, L.; Geng, H. R.; Ding, Y. An in situ dealloying and oxidation route to Co3O4 nanosheets and their ambient-temperature CO oxidation activity. ChemCatChem 2011, 3, 399-407.
[35]
Zhou, H. J.; Chen, L. M.; Malik, V.; Knies, C.; Hofmann, D. M.; Bhatti, K. P.; Chaudhary, S.; Klar, P. J.; Heimbrodt, W.; Klingshirn, C.; Kalt, H. Raman studies of ZnO:Co thin films. Phys. Stat. Sol. 2007, 204, 112-117.
[36]
Sun, X. H.; Du, H. Acid-exfoliated metallic Co0.85Se nanosheets as cocatalyst on Cd0.5Zn0.5S for photocatalytic hydrogen evolution under visible-light irradiation. ACS Sustainable Chem. Eng. 2019, 7, 16320-16328.
[37]
Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 2016, 1, 589-594.
[38]
Wen, Y.; Xia, Y. D.; Zhang, S. W. Tungsten disulphide nanorattle: A new type of high performance electrocatalyst for hydrogen evolution reaction. J. Power Sources 2016, 307, 593-598.
[39]
Zhou, X. L.; Liu, Y.; Ju, H. X.; Pan, B. C.; Zhu, J. F.; Ding, T.; Wang, C. D.; Yang, Q. Design and epitaxial growth of MoSe2-NiSe vertical heteronanostructures with electronic modulation for enhanced hydrogen evolution reaction. Chem. Mater. 2016, 28, 1838-1846.
[40]
Lei, C. S.; Zhou, W.; Feng, Q. G.; Lei, Y. P.; Zhang, Y.; Chen, Y.; Qin, J. Q. Charge engineering of Mo2C@defect-rich N-doped carbon nanosheets for efficient electrocatalytic H2 evolution. Nano-Micro Lett. 2019, 11, 45.
[41]
Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375-380.
[42]
Ma, B.; Yang, Z. C.; Yuan, Z. H.; Chen, Y. T. Effective surface roughening of three-dimensional copper foam via sulfurization treatment as a bifunctional electrocatalyst for water splitting. Int. J. Hydrogen Energy 2019, 44, 1620-1626.
[43]
Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.
[44]
Suliman, M. H.; Adam, A.; Siddiqui, M. N; Yamani, Z. H.; Qamar, M. Facile synthesis of ultrathin interconnected carbon nanosheets as a robust support for small and uniformly-dispersed iron phosphide for the hydrogen evolution reaction. Carbon 2019, 144, 764-771.
[45]
Cao, J. H.; Wang, K. X.; Chen, J. Y.; Lei, C. J.; Yang, B.; Li, Z. J.; Lei, L. C.; Hou, Y.; Ostrikov, K. Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano- Micro Lett. 2019, 11, 67.
[46]
Guo, B. J.; Yu, K.; Li, H. L.; Song, H. L.; Zhang, Y. Y.; Lei, X.; Fu, H.; Tan, Y. H.; Zhu, Z. Q. Hollow structured micro/nano MoS2 spheres for high electrocatalytic activity hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 5517-5525.
[47]
Deng, S. J.; Zhang, K. L.; Xie, D.; Zhang, Y.; Zhang, Y. Q.; Wang, Y. D.; Wu, J. B.; Wang, X. L.; Fan, H. J.; Xia, X. H. et al. High- index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. 2019, 11, 12.
[48]
Cui, Z.; Chu, H.; Gao, S. P.; Pei, Y.; Ji, J.; Ge, Y. C.; Dong, P.; Ajayan, P. M.; Shen, J. F.; Ye, M. X. Large-scale controlled synthesis of porous two-dimensional nanosheets for the hydrogen evolution reaction through a chemical pathway. Nanoscale 2018, 10, 6168-6176.
[49]
Feng, J. X.; Ye, S. H.; Xu, H.; Tong, Y. X.; Li, G. R. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Adv. Mater. 2016, 28, 4698-4703.
[50]
Zhang, D. D.; Shi, J. Y.; Qi, Y.; Wang, X. M.; Wang, H.; Li, M. R.; Liu, S. Z.; Li, C. Quasi-amorphous metallic nickel nanopowder as an efficient and durable electrocatalyst for alkaline hydrogen evolution. Adv. Sci. 2018, 5, 1801216.
[51]
Wu, Y. H.; Gao, Y.; He, H. W.; Zhang, P. Novel electrocatalyst of nickel sulfide boron coating for hydrogen evolution reaction in alkaline solution. Appl. Surf. Sci. 2019, 480, 689-696.
[52]
Masud, J.; Swesi, A. T.; Liyanage, W. P. R.; Nath, M. Cobalt selenide nanostructures: An efficient bifunctional catalyst with high current density at low coverage. ACS Appl. Mater. Interfaces 2016, 8, 17292-17302.
[53]
Cheng, L.; Huang, W. J.; Gong, Q. F.; Liu, C. H.; Liu, Z.; Li, Y. G.; Dai, H. J. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7860-7863.
Nano Research
Pages 2950-2957
Cite this article:
Qin R, Hou J, Xu C, et al. Self-supporting Co0.85Se nanosheets anchored on Co plate as highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Nano Research, 2020, 13(11): 2950-2957. https://doi.org/10.1007/s12274-020-2952-0
Topics:

747

Views

23

Crossref

N/A

Web of Science

23

Scopus

3

CSCD

Altmetrics

Received: 09 February 2020
Revised: 15 June 2020
Accepted: 25 June 2020
Published: 04 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return