AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Scalable and controllable synthesis of 2D high-proportion 1T-phase MoS2

Xiang Gao1,2Liukang Xiong1Jiabin Wu1Jun Wan1Liang Huang1( )
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Show Author Information

Graphical Abstract

Abstract

Two-dimensional molybdenum disulfide (2D MoS2) is considered as a promising candidate for many applications due to its unique structure and properties. However, the controllable synthesis of large-scale and high-quality 2D 1T-phase MoS2 is still a challenge. Herein, we present the scalable and controllable synthesis of 2D MoS2 from 2H to 1T@2H phase by using K2SO4 salt as a simultaneous high-temperature sulfur source and template. The as-synthesized 1T@2H-2D MoS2 exhibits a high yield and can be easily assembled into freestanding electrode with high specific capacitance of 434 F/g at a scan rate of 1 mV/s in LiClO4 ethylene carbonate/dimethyl carbonate (EC/DMC). Moreover, various single-crystal 2D transition metal sulfides (WS2, PbS, MnS and Ni9S8) and 2D S-doped carbon can be synthesized using this method. We believe that this study may provide a new sight for scalable and controllable synthesis of other 2D materials beyond 2D MoS2.

Electronic Supplementary Material

Download File(s)
12274_2020_2950_MOESM1_ESM.pdf (2.3 MB)

References

[1]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[2]
Liu, L.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T' MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108-1114.
[3]
Cai, Y. Q.; Lan, J. H.; Zhang, G.; Zhang, Y. W. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 2014, 89, 035438.
[4]
Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703-9709.
[5]
Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668-673.
[6]
Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313-318.
[7]
Liu, Y. Y.; Wu, J. J.; Hackenberg, K. P.; Zhang, J.; Wang, Y. M.; Yang, Y. C.; Keyshar, K.; Gu, J.; Ogitsu, T.; Vajtai, R. et al. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2017, 6, 17127.
[8]
Li, G. Q.; Zhang, D.; Qiao, Q.; Yu, Y. F.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S. et al. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 16632-16638.
[9]
Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451-9469.
[10]
Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.
[11]
Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267-6295.
[12]
Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
[13]
Li, H.; Wu, J.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067-1075.
[14]
Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.
[15]
Varrla, E.; Backes, C.; Paton, K. R.; Harvey, A.; Gholamvand, Z.; McCauley, J.; Coleman, J. N. Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem. Mater. 2015, 27, 1129-1139.
[16]
Zhang, X.; Lai, Z. C.; Tan, C. L.; Zhang, H. Solution-processed two-dimensional MoS2 nanosheets: Preparation, hybridization, and applications. Angew. Chem., Int. Ed. 2016, 55, 8816-8838.
[17]
Zeng, Z. Y.; Sun, T.; Zhu, J. X.; Huang, X.; Yin, Z. Y.; Lu, G.; Fan, Z. X.; Yan, Q. Y.; Hng, H. H.; Zhang, H. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem., Int. Ed. 2012, 51, 9052-9056.
[18]
Shi, Y. M.; Li, H. N.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 2015, 44, 2744-2756.
[19]
Dong, R. H.; Zhang, T.; Feng, X. L. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev. 2018, 118, 6189-6235.
[20]
Chen, Y.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Achieving uniform monolayer transition metal dichalcogenides film on silicon wafer via silanization treatment: A typical study on WS2. Adv. Mater. 2017, 29, 1603500.
[21]
Li, C.; Huang, L.; Snigdha, G. P.; Yu, Y. F.; Cao, L. Y. Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: The case of GeS. ACS Nano 2012, 6, 8868-8877.
[22]
Wang, P. P.; Sun, H. Y.; Ji, Y. J.; Li, W. H.; Wang, X. Three-dimensional assembly of single-layered MoS2. Adv. Mater. 2014, 26, 964-969.
[23]
Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702-2712.
[24]
Wypych, F.; Weber, T.; Prins, R. Scanning tunneling microscopic investigation of 1T-MoS2. Chem. Mater. 1998, 10, 723-727.
[25]
Shi, S. L.; Sun, Z. X.; Hu, Y. H. Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2. J. Mater. Chem. A 2018, 6, 23932-23977.
[26]
Chang, K.; Hai, X.; Pang, H.; Zhang, H. B.; Shi, L.; Liu, G. G.; Liu, H. M.; Zhao, G. X.; Li, M.; Ye, J. H. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 2016, 28, 10033-10041.
[27]
Li, X.; Li, X. M.; Zang, X. B.; Zhu, M.; He, Y. J.; Wang, K. L.; Xie, D.; Zhu, H. W. Role of hydrogen in the chemical vapor deposition growth of MoS2 atomic layers. Nanoscale 2015, 7, 8398-8404.
[28]
Heyne, M. H.; Chiappe, D.; Meersschaut, J.; Nuytten, T.; Conard, T.; Bender, H.; Huyghebaert, C.; Radu, I. P.; Caymax, M.; de Marneffe, J. F. et al. Multilayer MoS2 growth by metal and metal oxide sulfurization. J. Mater. Chem. C 2016, 4, 1295-1304.
[29]
Xiao, X.; Wang, H.; Urbankowski, P.; Gogotsi, Y. Topochemical synthesis of 2D materials. Chem. Soc. Rev. 2018, 47, 8744-8765.
[30]
Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed. 2010, 49, 4059-4062.
[31]
Yu, H. M.; Yang, X.; Xiao, X.; Chen, M.; Zhang, Q. H.; Huang, L.; Wu, J. B.; Li, T. Q.; Chen, S. M.; Song, L. et al. Atmospheric-pressure synthesis of 2D nitrogen-rich tungsten nitride. Adv. Mater. 2018, 30, 1805655.
[32]
Xiao, X.; Song, H. B.; Lin, S. Z.; Zhou, Y.; Zhan, X. J.; Hu, Z. M.; Zhang, Q.; Sun, J. Y.; Yang, B.; Li, T. Q. et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 2016, 7, 11296.
[33]
Startsev, A. N.; Kruglyakova, O. V. Diatomic gaseous sulfur obtained at low temperature catalytic decomposition of hydrogen sulfide. J. Chem. Chem. Eng. 2013, 7, 1007-1013.
[34]
Wang, S.; Zhang, D.; Li, B.; Zhang, C.; Du, Z. G.; Yin, H. M.; Bi, X. F.; Yang, S. B. Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1801345.
[35]
Wang, L. L.; Liu, X.; Luo, J. M.; Duan, X. D.; Crittenden, J.; Liu, C. B.; Zhang, S. Q.; Pei, Y.; Zeng, Y. X.; Duan, X. F. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2017, 56, 7610-7614.
[36]
Yoo, H. D.; Li, Y. F.; Liang, Y. L.; Lan, Y. C.; Wang, F.; Yao, Y. Intercalation pseudocapacitance of exfoliated molybdenum disulfide for ultrafast energy storage. ChemNanoMat 2016, 2, 688-691.
[37]
Wang, X.; Ding, W.; Li, H.; Li, H.; Zhu, S. J.; Zhu, X. G.; Dai, J. M.; Sheng, Z. G.; Wang, H.; Zhu, X. B. et al. Unveiling highly ambient-stable multilayered 1T-MoS2 towards all-solid-state flexible supercapacitors. J. Mater. Chem. A 2019, 7, 19152-19160.
[38]
Patil, S. J.; Kim, J. H.; Lee, D. W. Graphene-nanosheet wrapped cobalt sulphide as a binder free hybrid electrode for asymmetric solid-state supercapacitor. J. Power Sources 2017, 342, 652-665.
[39]
Zhou, R.; Han, C. J.; Wang, X. M. Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances. J. Power Sources 2017, 352, 99-110.
[40]
Majumder, M.; Choudhary, R. B.; Koiry, S. P.; Thakur, A. K.; Kumar, U. Gravimetric and volumetric capacitive performance of polyindole/ carbon black/MoS2 hybrid electrode material for supercapacitor applications. Electrochim. Acta 2017, 248, 98-111.
[41]
Zhang, S. W.; Yin, B. S.; Wang, Z. B.; Peter, F. Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chem. Eng. J. 2016, 306, 193-203.
[42]
Karade, S. S.; Dubal, D. P.; Sankapal, B. R. Decoration of ultrathin MoS2 nanoflakes over MWCNTs: Enhanced supercapacitive performance through electrode to symmetric all-solid-state device. ChemistrySelect 2017, 2, 10405-10412.
[43]
Chen, Y. X.; Ma, W. J.; Cai, K. F.; Yang, X. W.; Huang, C. J. In situ growth of polypyrrole onto three-dimensional tubular MoS2 as an advanced negative electrode material for supercapacitor. Electrochim. Acta 2017, 246, 615-624.
[44]
Li, Y. J.; Wang, G. L.; Wei, T.; Fan, Z. J.; Yan, P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 2016, 19, 165-175.
[45]
Cook, J. B.; Kim, H. S.; Lin, T. C.; Lai, C. H.; Dunn, B.; Tolbert, S. H. Pseudocapacitive charge storage in thick composite MoS2 nanocrystal- based electrodes. Adv. Energy Mater. 2017, 7, 1601283.
[46]
Jia, Y. L.; Wan, H. Q.; Chen, L.; Zhou, H. D.; Chen, J. M. Hierarchical nanosheet-based MoS2/graphene nanobelts with high electrochemical energy storage performance. J. Power Sources 2017, 354, 1-9.
[47]
Mahmood, A.; Zou, R. Q.; Wang, Q. F.; Xia, W.; Tabassum, H.; Qiu, B.; Zhao, R. Nanostructured electrode materials derived from metal- organic framework xerogels for high-energy-density asymmetric supercapacitor. ACS Appl. Mater. Interfaces 2016, 8, 2148-2157.
Nano Research
Pages 2933-2938
Cite this article:
Gao X, Xiong L, Wu J, et al. Scalable and controllable synthesis of 2D high-proportion 1T-phase MoS2. Nano Research, 2020, 13(11): 2933-2938. https://doi.org/10.1007/s12274-020-2950-2
Topics:

720

Views

20

Crossref

N/A

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 28 February 2020
Revised: 29 May 2020
Accepted: 24 June 2020
Published: 16 July 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return