Journal Home > Volume 13 , Issue 11

Conversion of inert N2 molecules into NH3 via electrochemical methods is an environmentally friendly alternative to replace the traditional Haber-Bosch process. However, the development of highly efficient catalyst is still challenging. Herein, we report a density functional theory (DFT) based high-throughput screening to investigate the potential of 23 atomic transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, W, Pt and Au) supported on phosphorene monolayer as electrocatalyst for nitrogen reduction reaction (NRR). Our theoretical results demonstrate that V single atom anchoring on phosphorene monolayer exhibits good thermal stability, selectivity and excellent catalytic activity with a low overpotential of 0.18 V. Importantly, rational design principles and electronic descriptor between the intrinsic electronic properties and activation barrier have been developed. Our work offers a new promising noble metal-free catalyst for NRR and reveals profound insights into the activity origin to guide further design.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Activity origin and design principles for atomic vanadium anchoring on phosphorene monolayer for nitrogen reduction reaction

Show Author's information Xiongyi LiangXiangxuan DengChen GuoChi-Man Lawrence Wu( )
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China

Abstract

Conversion of inert N2 molecules into NH3 via electrochemical methods is an environmentally friendly alternative to replace the traditional Haber-Bosch process. However, the development of highly efficient catalyst is still challenging. Herein, we report a density functional theory (DFT) based high-throughput screening to investigate the potential of 23 atomic transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, W, Pt and Au) supported on phosphorene monolayer as electrocatalyst for nitrogen reduction reaction (NRR). Our theoretical results demonstrate that V single atom anchoring on phosphorene monolayer exhibits good thermal stability, selectivity and excellent catalytic activity with a low overpotential of 0.18 V. Importantly, rational design principles and electronic descriptor between the intrinsic electronic properties and activation barrier have been developed. Our work offers a new promising noble metal-free catalyst for NRR and reveals profound insights into the activity origin to guide further design.

Keywords: density functional theory, transition metal, phosphorene, high-throughput screening, electronic descriptor, single atomic catalyst

References(43)

[1]
Légaré, M. A.; Bélanger-Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Nitrogen fixation and reduction at boron. Science 2018, 359, 896-900.
[2]
Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161-14168.
[3]
Mineral Commodity Summaries 2014; U.S. Department of the Interior, U.S. Geological Survey: Reston, Virginia, USA, 2014.
[4]
Smil, V. Detonator of the population explosion. Nature 1999, 400, 415.
[5]
Van Kessel, M. A. H.; Speth, D. R.; Albertsen, M.; Nielsen, P. H.; Den Camp, H. J. M. O.; Kartal, B.; Jetten, M. S.; Lücker, S. Complete nitrification by a single microorganism. Nature 2015, 528, 555-559.
[6]
Azofra, L. M.; Li, N.; MacFarlane, D. R.; Sun, C. H. Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy Environ. Sci. 2016, 9, 2545-2549.
[7]
Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 2015, 8, 2180-2186.
[8]
Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.
[9]
Deng, J.; Iñiguez, J. A.; Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2018, 2, 846-856.
[10]
Liu, C. W.; Li, Q. Y.; Zhang, J.; Jin, Y. G.; MacFarlane, D. R.; Sun, C. H. Conversion of dinitrogen to ammonia on Ru atoms supported on boron sheets: A DFT study. J. Mater. Chem. A 2019, 7, 4771-4776.
[11]
Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480-12487.
[12]
Ling, C. Y.; Zhang, Y. H.; Li, Q.; Bai, X. W.; Shi, L.; Wang, J. L. New mechanism for N2 reduction: The essential role of surface hydrogenation. J. Am. Chem. Soc. 2019, 141, 18264-18270.
[13]
Murakami, T.; Nohira, T.; Goto, T.; Ogata, Y. H.; Ito, Y. Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure. Electrochim. Acta 2005, 50, 5423-5426.
[14]
Kordali, V.; Kyriacou, G.; Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 2000, 17, 1673-1674.
[15]
Liu, H. M.; Han, S. H.; Zhao, Y.; Zhu, Y. Y.; Tian, X. L.; Zeng, J. H.; Jiang, J. X.; Xia, B. Y.; Chen, Y. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J. Mater. Chem. A 2018, 6, 3211-3217.
[16]
Tao, H.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204-214.
[17]
Yang, T.; Song, T. T.; Zhou, J.; Wang, S. J.; Chi, D. Z.; Shen, L.; Yang, M.; Feng, Y. P. High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation. Nano Energy 2020, 68, 104304.
[18]
Yin, H.; Li, S. L.; Gan, L. Y.; Wang, P. Pt-embedded in monolayer g-C3N4 as a promising single-atom electrocatalyst for ammonia synthesis. J. Mater. Chem. A 2019, 7, 11908-11914.
[19]
Zhang, L. F.; Zhao, W. H.; Zhang, W. H.; Chen, J.; Hu, Z. P. gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res. 2019, 12, 1181-1186.
[20]
Zhang, X.; Chen, A.; Zhang, Z. H.; Zhou, Z. Double-atom catalysts: Transition metal dimer-anchored C2N monolayers as N2 fixation electrocatalysts. J. Mater. Chem. A 2018, 6, 18599-18604.
[21]
Liang, X. Y.; Wu, C. M. L. Metal-free two-dimensional phosphorus carbide as an efficient electrocatalyst for hydrogen evolution reaction comparable to platinum. Nano Energy 2020, 71, 104603.
[22]
Zhu, Y. H.; Gong, L. L.; Zhang, D. T.; Wang, X. W.; Zhang, J.; Zhang, L. P.; Dai, L. M.; Xia, Z. H. Catalytic origin and universal descriptors of heteroatom-doped photocatalysts for solar fuel production. Nano Energy 2019, 63, 103819.
[23]
Sinthika, S.; Waghmare, U. V.; Thapa, R. Structural and electronic descriptors of catalytic activity of graphene-based materials: First- principles theoretical analysis. Small 2018, 14, 1703609.
[24]
Rahman, M. Z.; Kwong, C. W.; Davey, K.; Qiao, S. Z. 2D phosphorene as a water splitting photocatalyst: Fundamentals to applications. Energy Environ. Sci. 2016, 9, 709-728.
[25]
Ran, J. R.; Zhu, B. C.; Qiao, S. Z. Phosphorene co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2017, 56, 10373-10377.
[26]
Zhang, L. L.; Ding, L. X.; Chen, G. F.; Yang, X. F.; Wang, H. H. Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem., Int. Ed. 2019, 131, 2638-2642.
[27]
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.
[28]
Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M. B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901.
[29]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[30]
Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892-7895.
[31]
Lejaeghere, K.; Bihlmayer, G.; Björkman, T.; Blaha, P.; Blügel, S.; Blum, V.; Caliste, D.; Castelli, I. E.; Clark, S. J.; Dal Corso, A. et al. Reproducibility in density functional theory calculations of solids. Science 2016, 351, aad3000.
[32]
Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311-1315.
[33]
Hu, W.; Yang, J. L. Defects in phosphorene. J. Phys. Chem. C 2015, 119, 20474-20480.
[34]
Liang, X. Y.; Ng, S. P.; Ding, N.; Wu, C. M. L. Enhanced hydrogen purification in nanoporous phosphorene membrane with applied electric field. J. Phys. Chem. C 2018, 122, 3497-3505.
[35]
Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235-1245.
[36]
Chen, Z.; Zhao, J. X.; Cabrera, C. R.; Chen, Z. F. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods 2019, 3, 1800368.
[37]
Ling, C. Y.; Ouyang, Y. X.; Li, Q.; Bai, X. W.; Mao, X.; Du, A. J.; Wang, J. L. A general two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation. Small Methods 2019, 3, 1800376.
[38]
Madsen, G. K. H.; Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175, 67-71.
[39]
Ould NE, M. L.; Boujnah, M.; Benyoussef, A.; El Kenz, A. Electronic and electrical conductivity of AB and AA-stacked bilayer graphene with tunable layer separation. J. Supercond. Novel Magn. 2017, 30, 1263-1267.
[40]
Huang, J.; Alexander-Webber, J. A.; Janssen, T. J. B. M.; Tzalenchuk, A.; Yager, T.; Lara-Avila, S.; Kubatkin, S.; Myers-Ward, R. L.; Wheeler, V. D.; Gaskill, D. K. et al. Hot carrier relaxation of Dirac fermions in bilayer epitaxial graphene. J. Phys.: Condens. Matter 2015, 27, 164202.
[41]
Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Castro Neto, A. H.; Özyilmaz, B. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 2016, 16, 2145-2151.
[42]
Liu, K.; Fu, J. W.; Zhu, L.; Zhang, X. D.; Li, H. M.; Liu, H.; Hu, J. H.; Liu, M. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale 2020, 12, 4903-4908.
[43]
Hu, T.; Hong, J. S. First-principles study of metal adatom adsorption on black phosphorene. J. Phys. Chem. C 2015, 119, 8199-8207.
File
12274_2020_2949_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright

Publication history

Received: 08 March 2020
Revised: 19 June 2020
Accepted: 23 June 2020
Published: 20 July 2020
Issue date: November 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return