AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Intercalation and hybrid heterostructure integration of two- dimensional atomic crystals with functional organic semiconductor molecules

Wen He1,§Han Zang2,3,§Songhua Cai2,4,5,§Zhangyan Mu1Cheng Liu1Mengning Ding1( )Peng Wang2,4,6( )Xinran Wang2,3( )
Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 999077 Kowloon, Hong Kong, China
Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China

§ Wen He, Han Zang, and Songhua Cai contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Van der Waals (vdW) integration affords semiconductor heterostructures without constrains of lattice matching and opens up a new realm of functional devices by design. A particularly interesting approach is the electrochemical intercalation of two-dimensional (2D) atomic crystal and formation of superlattices, which can provide scalable production of novel vdW heterostructures. However, this approach has been limited to the use of organic cations with non-functional aliphatic chains, therefore failed to take the advantage of the vast potentials in molecular functionalities (electronic, photonic, magnetic, etc.). Here we report the integration of 2D crystal (MoS2, WS2, highly oriented pyrolytic graphite (HOPG), WSe2 as model systems) with electrochemically inert organic molecules that possess semiconducting characteristics (including perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), pentacene and fullerene), through on-chip electrochemical intercalation. An unprecedented long-range spatial feature of intercalation has been achieved, which allowed facile assembly of a vertical MoS2-PTCDA-Si junction. The intercalated heterostructure shows significant modulation of the lateral transport, and leads to a molecular tunneling characteristic at the vertical direction. The general intercalation of charge neutral and functional molecules defines a versatile platform of inorganic/organic hybrid vdW heterostructures with significantly extended molecular functional building blocks, holding great promise in future design of nano/quantum devices.

Electronic Supplementary Material

Download File(s)
12274_2020_2948_MOESM1_ESM.pdf (3.1 MB)

References

[1]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[2]
Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470-474.
[3]
Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.
[4]
Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 2014, 8, 3992-4003.
[5]
Cui, S. M.; Pu, H. H.; Wells, S. A.; Wen, Z. H.; Mao, S.; Chang, J. B.; Hersam, M. C.; Chen, J. H. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 2015, 6, 8632.
[6]
Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419-425.
[7]
Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.
[8]
Liu, Y.; Huang, Y.; Duan, X. F. van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323-333.
[9]
Zhang, J. S.; Yang, A. K.; Wu, X.; van de Groep, J.; Tang, P. Z.; Li, S. R.; Liu, B. F.; Shi, F. F.; Wan, J. Y.; Li, Q. T.; Sun, Y. M. et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun. 2018, 9, 5289.
[10]
Gong, Y. J.; Yuan, H. T.; Wu, C. L.; Tang, P. Z.; Yang, S. Z.; Yang, A. K.; Li, G. D.; Liu, B. F.; van de Groep, J.; Brongersma, M. L.; Chisholm, M. F. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 2018, 13, 294-299.
[11]
Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625-628.
[12]
Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase- purity 1T'-MoS2- and 1T'-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638-643.
[13]
Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853-7856.
[14]
Tarasov, A.; Zhang, S. Y.; Tsai, M. Y.; Campbell, P. M.; Graham, S.; Barlow, S.; Marder, S. R.; Vogel, E. M. Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. Adv. Mater. 2015, 27, 1175-1181.
[15]
Shin, H. J.; Choi, W. M.; Choi, D.; Han, G. H.; Yoon, S. M.; Park, H. K.; Kim, S. W.; Jin, Y. W.; Lee, S. Y.; Kim, J. M. et al. Control of electronic structure of graphene by various dopants and their effects on a nanogenerator. J. Am. Chem. Soc. 2010, 132, 15603-15609.
[16]
Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.
[17]
Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J. S.; Bechtel, H. A.; Desai, S. B.; Kronast, F.; Unal, A. A. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198-6202.
[18]
Cui, X.; Shih, E. M.; Jauregui, L. A.; Chae, S. H.; Kim, Y. D.; Li, B. C.; Seo, D.; Pistunova, K.; Yin, J.; Park, J. H. et al. Low- temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 2017, 17, 4781-4786.
[19]
Wang, M.; Cai, S. H.; Pan, C.; Wang, C. Y.; Lian, X. J.; Zhuo, Y.; Xu, K.; Cao, T. J.; Pan, X. Q.; Wang, B. G. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018, 1, 130.
[20]
Bediako, D. K.; Rezaee, M.; Yoo, H.; Larson, D. T.; Zhao, S. Y. F.; Taniguchi, T.; Watanabe, K.; Brower-Thomas, T. L.; Kaxiras, E.; Kim, P. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 2018, 558, 425-429.
[21]
Chen, Z. X.; Leng, K.; Zhao, X. X.; Malkhandi, S.; Tang, W.; Tian, B. B.; Dong, L.; Zheng, L. R.; Lin, M.; Yeo, B. S. et al. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nat. Commun. 2017, 8, 14548.
[22]
Wan, C. L.; Gu, X. K.; Dang, F.; Itoh, T.; Wang, Y. F.; Sasaki, H.; Kondo, M.; Koga, K.; Yabuki, K.; Snyder, G. J. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 2015, 14, 622-627.
[23]
Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231-236.
[24]
Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254-258.
[25]
He, Q. Y.; Lin, Z. Y.; Ding, M. N.; Yin, A. X.; Halim, U.; Wang, C.; Liu, Y.; Cheng, H. C.; Huang, Y.; Duan, X. X. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 2019, 19, 6819-6826.
[26]
Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.
[27]
Gangilenka, V. R.; Titova, L. V.; Smith, L. M.; Wagner, H. P.; DeSilva, L. A. A.; Gisslén, L.; Scholz, R. Selective excitation of exciton transitions in PTCDA crystals and films. Phys. Rev. B 2010, 81, 155208.
[28]
Ding, M. N.; He, Q. Y.; Wang, G. M.; Cheng, H. C.; Huang, Y.; Duan, X. F. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. Nat. Commun. 2015, 6, 7867.
[29]
Ding, M. N.; Shiu, H. Y.; Li, S. L.; Lee, C. K.; Wang, G. M.; Wu, H.; Weiss, N. O.; Young, T. D.; Weiss, P. S.; Wong, G. C. L. et al. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter. ACS Nano 2016, 10, 9919-9926.
[30]
Ding, M. N.; Zhong, G. Y.; Zhao, Z. P.; Huang, Z. H.; Li, M. F.; Shiu, H. Y.; Liu, Y.; Shakir, I.; Huang, Y.; Duan, X. F. On-chip in situ monitoring of competitive interfacial anionic chemisorption as a descriptor for oxygen reduction kinetics. ACS Cent. Sci. 2018, 4, 590-599.
[31]
Perera, M. M.; Lin, M. W.; Chuang, H. J.; Chamlagain, B. P.; Wang, C. Y.; Tan, X. B.; Cheng, M. M. C.; Tománek, D.; Zhou, Z. X. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 2013, 7, 4449-4458.
[32]
Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.
[33]
Zhanpeisov, N. U.; Nishio, S.; Fukumura, H. Density functional theory study of vibrational properties of the 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) molecule: IR, Raman, and UV-vis spectra. Int. J. Quantum Chem. 2005, 105, 368-375.
[34]
Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping- enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323-5329.
[35]
Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.
[36]
Hestand, N. J.; Spano, F. C. Expanded theory of H- and J-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 2018, 118, 7069-7163.
[37]
Kaushik, N.; Karmakar, D.; Nipane, A.; Karande, S.; Lodha, S. Interfacial n-doping using an ultrathin TiO2 layer for contact resistance reduction in MoS2. ACS Appl. Mater. Interfaces 2016, 8, 256-263.
[38]
Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100-105.
[39]
Ji, D. X.; Cai, S. H.; Paudel, T. R.; Sun, H. Y.; Zhang, C. C.; Han, L.; Wei, Y. F.; Zang, Y. P.; Gu, M.; Zhang, Y. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019, 570, 87-90.
[40]
Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70-74.
[41]
Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391-396.
[42]
Martin, J. M.; Vacher, B.; Ponsonnet, L.; Dupuis, V. Chemical bond mapping of carbon by image-spectrum EELS in the second derivative mode. Ultramicroscopy 1996, 65, 229-238.
[43]
Li, W. S.; Zhou, J.; Cai, S. H.; Yu, Z. H.; Zhang, J. L.; Fang, N.; Li, T. T.; Wu, Y.; Chen, T. S.; Xie, X. Y. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2019, 2, 563-571.
[44]
Liu, Y. P.; Yuan, L.; Yang, M.; Zheng, Y.; Li, L. J.; Gao, L. B.; Nerngchamnong, N.; Nai, C. T.; Sangeeth, C. S. S.; Feng, Y. P. et al. Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers. Nat. Commun. 2014, 5, 5461.
[45]
Jia, C. C.; Famili, M.; Carlotti, M.; Liu, Y.; Wang, P. Q.; Grace, I. M.; Feng, Z. Y.; Wang, Y. L.; Zhao, Z. P.; Ding, M. N. et al. Quantum interference mediated vertical molecular tunneling transistors. Sci. Adv. 2018, 4, eaat8237.
Nano Research
Pages 2917-2924
Cite this article:
He W, Zang H, Cai S, et al. Intercalation and hybrid heterostructure integration of two- dimensional atomic crystals with functional organic semiconductor molecules. Nano Research, 2020, 13(11): 2917-2924. https://doi.org/10.1007/s12274-020-2948-9
Topics:

826

Views

15

Crossref

N/A

Web of Science

15

Scopus

3

CSCD

Altmetrics

Received: 27 April 2020
Revised: 09 June 2020
Accepted: 19 June 2020
Published: 27 July 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return