Journal Home > Volume 13 , Issue 10

Printable elastic conductors promote the wide application of consumable electronic textiles (e-textiles) for pervasive healthcare monitoring and wearable computation. To assure a clean appearance, the e-textiles require a washing process to clean up the dirt after daily use. Thus, it is crucial to develop low-cost printable elastic conductors with strong adhesion to the textiles. Here, we report a composite elastic conductor based on Ag nanowires (NWs) and polyurethane elastomer. The composite could be dispersed into ink and easily printed onto textiles. One-step print could form robust conductive coatings without sealing on the textiles. Interestingly, the regional concentration of Ag NWs within the polyurethane matrix was observed during phase inversion, endowing the elastic conductor with a low percolation threshold of 0.12 vol.% and high conductivity of 3,668 S·cm-1. Thanks to the high adhesion of the elastic conductors, the resulted e-textiles could withstand repeated stretching, folding, and machine washing (20 times) without obvious performance decay, which reveals its potential application in consumable e-textiles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Printable elastic silver nanowire-based conductor for washable electronic textiles

Show Author's information Hong-Wu ZhuHuai-Ling GaoHao-Yu ZhaoJin GeBi-Cheng HuJin HuangShu-Hong Yu( )
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

Abstract

Printable elastic conductors promote the wide application of consumable electronic textiles (e-textiles) for pervasive healthcare monitoring and wearable computation. To assure a clean appearance, the e-textiles require a washing process to clean up the dirt after daily use. Thus, it is crucial to develop low-cost printable elastic conductors with strong adhesion to the textiles. Here, we report a composite elastic conductor based on Ag nanowires (NWs) and polyurethane elastomer. The composite could be dispersed into ink and easily printed onto textiles. One-step print could form robust conductive coatings without sealing on the textiles. Interestingly, the regional concentration of Ag NWs within the polyurethane matrix was observed during phase inversion, endowing the elastic conductor with a low percolation threshold of 0.12 vol.% and high conductivity of 3,668 S·cm-1. Thanks to the high adhesion of the elastic conductors, the resulted e-textiles could withstand repeated stretching, folding, and machine washing (20 times) without obvious performance decay, which reveals its potential application in consumable e-textiles.

Keywords: silver nanowires, electronic textiles, washability, printable elastic conductor, phase inversion

References(27)

[1]
Weng, W.; Chen, P. N.; He, S. S.; Sun, X. M.; Peng, H. S. Smart electronic textiles. Angew. Chem., Int. Ed. 2016, 55, 6140-6169.
[2]
Park, S. I.; Xiong, Y. J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977-981.
[3]
Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, D.; Someya, T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 2017, 16, 834-840.
[4]
Ko, H. C.; Stoykovich, M. P.; Song, J. Z.; Malyarchuk, V.; Choi, W. M.; Yu, C. J.; Geddes III, J. B.; Xiao, J. L.; Wang, S. D.; Huang, Y. G. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748-753.
[5]
Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K. J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R. H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95-99.
[6]
Pan, S. W.; Yang, Z. B.; Chen, P. N.; Deng, J.; Li, H. P.; Peng, H. S. Wearable solar cells by stacking textile electrodes. Angew. Chem., Int. Ed. 2014, 126, 6224-6228.
[7]
Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310-5336.
[8]
Li, Z.; Xu, Z.; Liu, Y. J.; Wang, R.; Gao, C. Multifunctional non- woven fabrics of interfused graphene fibres. Nat. Commun. 2016, 7, 13684.
[9]
Zhao, Z. Z.; Yan, C.; Liu, Z. X.; Fu, X. L.; Peng, L. M.; Hu, Y. F.; Zheng, Z. J. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 2016, 28, 10267-10274.
[10]
Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. A rubberlike stretchable active matrix using elastic conductors. Science 2008, 321, 1468-1472.
[11]
Chun, K. Y.; Oh, Y.; Rho, J. H.; Ahn, J. H.; Kim, Y. J.; Choi, H. R.; Baik, S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 2010, 5, 853-857.
[12]
Matsuhisa, N.; Kaltenbrunner, M.; Yokota, T.; Jinno, H.; Kuribara, K.; Sekitani, T.; Someya, T. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 2015, 6, 7461.
[13]
Yao, S. S.; Zhu, Y. Nanomaterial-enabled stretchable conductors: Strategies, materials and devices. Adv. Mater. 2015, 27, 1480-1511.
[14]
Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Graphene/elastomer nanocomposites. Carbon 2015, 95, 460-484.
[15]
Boland, C. S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z. L.; Ferreira, M. S.; Möbius, M. E. et al. Sensitive electromechanical sensors using viscoelastic graphene- polymer nanocomposites. Science 2016, 354, 1257-1260.
[16]
Pelíšková, M.; Piyamanocha, P.; Prokeš, J.; Varga, M.; Sáha, P. The electrical conductivity of ethylene butyl-acrylate/carbon black composites: The effect of foaming on the percolation threshold. Synth. Met. 2014, 188, 140-145.
[17]
Chen, Z.; Pfattner, R.; Bao, Z. N. Characterization and understanding of thermoresponsive polymer composites based on spiky nanostructured fillers. Adv. Electron. Mater. 2017, 3, 1600397.
[18]
Tee, B. C.; Wang, C.; Allen, R.; Bao, Z. N. An electrically and mechanically self-healing composite with pressure-and flexion- sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7, 825-832.
[19]
Nan, C. W.; Shen, Y.; Ma, J. Physical properties of composites near percolation. Annu. Rev. Mater. Res. 2010, 40, 131-151.
[20]
Bartlett, M. D.; Fassler, A.; Kazem, N.; Markvicka, E. J.; Mandal, P.; Majidi, C. Stretchable, high-k dielectric elastomers through liquid- metal inclusions. Adv. Mater. 2016, 28, 3726-3731.
[21]
Qin, Q. Q.; Yin, S.; Cheng, G. M.; Li, X. Y.; Chang, T. H.; Richter, G.; Zhu, Y.; Gao, H. J. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat. Commun. 2015, 6, 5983.
[22]
Zhu, Y. Mechanics of crystalline nanowires: An experimental perspective. Appl. Mech. Rev. 2017, 69, 010802.
[23]
Choi, S.; Park, J.; Hyun, W.; Kim, J.; Kim, J.; Lee, Y. B.; Song, C.; Hwang, H. J.; Kim, J. H.; Hyeon, T. et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 2015, 9, 6626-6633.
[24]
Park, M.; Park, J.; Jeong, U. Design of conductive composite elastomers for stretchable electronics. Nano Today 2014, 9, 244-260.
[25]
Brandrup, J.; Immergut, E. H.; Grulke, E. A.; Abe, A.; Bloch, D. R. Polymer Handbook; 3rd ed. Wiley: New York, 1989.
[26]
Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827-829.
[27]
Thongruang, W.; Balik, C. M.; Spontak, R. J. Volume-exclusion effects in polyethylene blends filled with carbon black, graphite, or carbon fiber. J. Polym. Sci. Part B Pol. Phys. 2002, 40, 1013-1025.
File
12274_2020_2947_MOESM1_ESM.pdf (5.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 May 2020
Revised: 14 June 2020
Accepted: 20 June 2020
Published: 05 October 2020
Issue date: October 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51732011, 21431006, 21761132008, 81788101, and 11227901), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21521001), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) (No. QYZDJ- SSW-SLH036), the National Basic Research Program of China (No. 2014CB931800), and the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS (No. 2015HSC-UE007). This work was partially carried out at the Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China.

Return