Journal Home > Volume 14 , Issue 6

Electron-phonon coupling affects the properties of two-dimensional (2D) materials significantly, leading to a series of novel phenomena. Inelastic light scattering provides a powerful experimental tool to explore electron-phonon interaction in 2D materials. This review gives an overview of the basic theory and experimental advances of electron-phonon coupling in 2D materials detected by Raman and Brillouin scattering, respectively. In the Raman scattering part, we review Raman spectroscopy studies of electron-phonon coupling in graphene, transition metal disulfide compounds, van der Waals heterostructures, strongly correlated systems, and 2D magnetic materials. In the Brillouin scattering part, we extensively introduce Brillouin spectroscopy in non-van der Waals 2D structures, including temperature sensors for phonons and magnons, interfacial Dzyaloshinsky-Moriya interaction and spin torque in multilayer magnetic structures, as well as exciton-polariton in semiconductor quantum well.


menu
Abstract
Full text
Outline
About this article

Detection of electron-phonon coupling in two-dimensional materials by light scattering

Show Author's information Jia-Min Lai1,2Ya-Ru Xie1,2Jun Zhang1,2,3,4( )
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 101408, China
Beijing Academy of Quantum Information Science, Beijing 100193, China

Abstract

Electron-phonon coupling affects the properties of two-dimensional (2D) materials significantly, leading to a series of novel phenomena. Inelastic light scattering provides a powerful experimental tool to explore electron-phonon interaction in 2D materials. This review gives an overview of the basic theory and experimental advances of electron-phonon coupling in 2D materials detected by Raman and Brillouin scattering, respectively. In the Raman scattering part, we review Raman spectroscopy studies of electron-phonon coupling in graphene, transition metal disulfide compounds, van der Waals heterostructures, strongly correlated systems, and 2D magnetic materials. In the Brillouin scattering part, we extensively introduce Brillouin spectroscopy in non-van der Waals 2D structures, including temperature sensors for phonons and magnons, interfacial Dzyaloshinsky-Moriya interaction and spin torque in multilayer magnetic structures, as well as exciton-polariton in semiconductor quantum well.

Keywords: two-dimensional (2D) materials, electron-phonon coupling, Raman scattering, Brillouin scattering

References(197)

[1]
A. K. Geim,; I. V. Grigorieva, van der Waals heterostructures. Nature 2013, 499, 419-425.
[2]
N. Mounet,; M. Gibertini,; P. Schwaller,; D. Campi,; A. Merkys,; A. Marrazzo,; T. Sohier,; I. E. Castelli,; A. Cepellotti,; G. Pizzi, et al. Two- dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246-252.
[3]
Q. H. Wang,; K. Kalantar-Zadeh,; A. Kis,; J. N. Coleman,; M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[4]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[5]
V. Baltz,; A. Manchon,; M. Tsoi,; T. Moriyama,; T. Ono,; Y. Tserkovnyak, Antiferromagnetic spintronics. Rev. Mod. Phys. 2018, 90, 015005.
[6]
S. Shree,; M. Semina,; C. Robert,; B. Han,; T. Amand,; A. Balocchi,; M. Manca,; E. Courtade,; X. Marie,; T. Taniguchi, et al. Observation of exciton-phonon coupling in MoSe2 monolayers. Phys. Rev. B 2018, 98, 035302.
[7]
F. C. Wu,; A. H. MacDonald,; I. Martin, Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 2018, 121, 257001.
[8]
Y. Cao,; V. Fatemi,; A. Demir,; S. A. Fang,; S. L. Tomarken,; J. Y. Luo,; J. D. Sanchez-Yamagishi,; K. Watanabe,; T. Taniguchi,; E. Kaxiras, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80-84.
[9]
Y. Cao,; V. Fatemi,; S. A. Fang,; K. Watanabe,; T. Taniguchi,; E. Kaxiras,; P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43-50.
[10]
M. L. Lin,; Y. Zhou,; J. B. Wu,; X. Cong,; X. L. Liu,; J. Zhang,; H. Li,; W. Yao,; P. H. Tan, Cross-dimensional electron-phonon coupling in van der Waals heterostructures. Nat. Commun. 2019, 10, 2419.
[11]
Q. H. Tan,; Y. J. Sun,; X. L. Liu,; Y. Y. Zhao,; Q. H. Xiong,; P. H. Tan,; J. Zhang, Observation of forbidden phonons, fano resonance and dark excitons by resonance Raman scattering in few-layer WS2. 2D Mater. 2017, 4, 031007.
[12]
B. Miller,; J. Lindlau,; M. Bommert,; A. Neumann,; H. Yamaguchi,; A. Holleitner,; A. Högele,; U. Wurstbauer, Tuning the fröhlich exciton- phonon scattering in monolayer MoS2. Nat. Commun. 2019, 10, 807.
[13]
H. Uebbing,; H. Stolz,; W. von der Osten,; D. Hommel,; H. Schafer;; G. Landwehr, Resonance Brillouin scattering from quantized exciton- polaritons in ultrathin epitaxial layers of ZnSe. Il Nuovo Cimento D 1995, 17, 1753-1757.
[14]
M. Matsushita,; M. Nakayama, Theory of resonant light scattering through exciton-polaritons. Phys. Rev. B 1984, 30, 2074-2083.
[15]
A. N. Poddubny,; A. V. Poshakinskiy,; B. Jusserand,; A. Lemaitre, Resonant Brillouin scattering of excitonic polaritons in multiple- quantum-well structures. Phys. Rev. B 2014, 89, 235313.
[16]
J. B. Wu,; M. L. Lin,; X. Cong,; H. N. Liu,; P. H. Tan, Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822-1873.
[17]
W. J. Zhao,; P. H. Tan,; J. Zhang,; J. Liu, Charge transfer and optical phonon mixing in few-layer graphene chemically doped with sulfuric acid. Phys. Rev. B 2010, 82, 245423.
[18]
Q. H. Tan,; K. X. Xu,; Y. J. Sun,; X. L. Liu,; Y. F. Gao,; S. L. Ren,; P. H. Tan,; J. Zhang, Breakdown of Raman selection rules by Fröhlich interaction in few-layer WS2[Online]. https://ui.adsabs.harvard.edu/abs/2019arXiv190806613T (accessed August 01, 2019).
[19]
G. Ravikumar,; J. V. Yakhmi, Chapter 7—Functional superconducting materials. In Functional materials: Preparation, Processing and Applications; S. Banerjee,; A. K. Tyagi,, Eds.; Elsevier: London, 2012; pp 261-284.
[20]
F. E. Wang, Chapter 4—Superconductivity. In Bonding Theory for Metals and Alloys, 2nd ed.; F. E. Wang,, Ed.; Elsevier: London, 2019; pp 59-112.
[21]
J. Weis,; R. R. Gerhardts, Quantum hall effect. In Reference Module in Materials Science and Materials Engineering; Elsevier: London, 2016.
[22]
J. P. Eisenstein,; H. L. Stormer, The fractional quantum hall effect. Science 1990, 248, 1510-1516.
[23]
I. Ennen,; D. Kappe,; T. Rempel,; C. Glenske,; A. Hütten, Giant magnetoresistance: Basic concepts, microstructure, magnetic interactions and applications. Sensors 2016, 16, 904.
[24]
T. Oguchi, Theory of spin-wave interactions in ferro- and antiferromagnetism. Physi. Rev. 1960, 117, 117-123.
[25]
F. J. Dyson, General theory of spin-wave interactions. Phys. Rev. B 1956, 102, 1217-1230.
[26]
D. R. Birt,; K. An,; A. Weathers,; L. Shi,; M. Tsoi,; X. Q. Li, Brillouin light scattering spectra as local temperature sensors for thermal magnons and acoustic phonons. Appl. Phys. Lett. 2013, 102, 082401.
[27]
M. M. Lacerda,; F. Kargar,; E. Aytan,; R. Samnakay,; B. Debnath,; J. X. Li,; A. Khitun,; R. K. Lake,; J. Shi,; A. A. Balandin, Variable- temperature inelastic light scattering spectroscopy of nickel oxide: Disentangling phonons and magnons. Appl. Phys. Lett. 2017, 110, 202406.
[28]
K. S. Olsson,; N. Klimovich,; K. An,; S. Sullivan,; A. Weathers,; L. Shi,; X. Q. Li, Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon. Appl. Phys. Lett. 2015, 106, 051906.
[29]
K. S. Olsson,; K. An,; X. Q. Li, Magnon and phonon thermometry with inelastic light scattering. J. Phys. D: Appl. Phys. 2018, 51, 133001.
[30]
A. Ercole,; W. S. Lew,; G. Lauhoff,; E. T. M. Kernohan,; J. Lee,; J. A. C. Bland, Temperature-dependent spin-wave behavior in Co/CoO bilayers studied by Brillouin light scattering. Phys. Rev. B 2000, 62, 6429-6436.
[31]
M. Agrawal,; V. I. Vasyuchka,; A. A. Serga,; A. D. Karenowska,; G. A. Melkov,; B. Hillebrands, Direct measurement of magnon temperature: New insight into magnon-phonon coupling in magnetic insulators. Phys. Rev. Lett. 2013, 111, 107204.
[32]
M. Madami,; S. Bonetti,; G. Consolo,; S. Tacchi,; G. Carlotti,; G. Gubbiotti,; F. B. Mancoff,; M. A. Yar,; J. Åkerman, Direct observation of a propagating spin wave induced by spin-transfer torque. Nat. Nanotechnol. 2011, 6, 635-638.
[33]
J. H. Moon,; S. M. Seo,; K. J. Lee,; K. W. Kim,; J. Ryu,; H. W. Lee,; R. D. McMichael,; M. D. Stiles, Spin-wave propagation in the presence of interfacial Dzyaloshinskii-Moriya interaction. Phys. Rev. B 2013, 88, 184404.
[34]
T. S. Rahman,; D. L. Mills, Spin-wave renormalization in exchange- and dipolar-coupled ferromagnets: Bulk spin waves and the Damon- Eshbach surface spin wave. Phys. Rev. B 1979, 20, 1173-1188.
[35]
P. Y. Yu,; M. Cardona, Electronic band structures. In Fundamentals of Semiconductors: Physics and Materials Properties; P. Y. Yu,; M. Cardona,, Eds.; Springer: Berlin, Heidelberg, 2010; pp 13-98.
[36]
P. Y. Yu,; M. Cardona, Vibrational properties of semiconductors, and electron-phonon interactions. In Fundamentals of Semiconductors: Physics and Materials Properties; P. Y. Yu,; M. Cardona,, Eds.; Springer: Berlin, Heidelberg, 2010; pp 107-158.
[37]
P. Y. Yu,; M. Cardona, Optical properties I. In Fundamentals of Semiconductors: Physics and Materials Properties; P. Y. Yu,; M. Cardona,, Eds.; Springer: Berlin, Heidelberg, 2010; pp 243-344.
[38]
P. Y. Yu,; M. Cardona, Optical properties II. In Fundamentals of Semiconductors: Physics and Materials Properties; P. Y. Yu,; M. Cardona,, Eds.; Springer: Berlin, Heidelberg, 2010; pp 333-413.
[39]
K. Huang, Lattice vibrations and optical waves in ionic crystals. Nature 1951, 167, 779-780.
[40]
A. K. Ganguly,; J. L. Birman, Theory of lattice Raman scattering in insulators. Phys. Rev. 1967, 162, 806-816.
[41]
R. C. C. Leite,; J. F. Scott,; T. C. Damen, Multiple-phonon resonant Raman scattering in CdS. Phys. Rev. Lett. 1969, 22, 780-782.
[42]
T. L. Phan,; R. Vincent,; D. Cherns,; N. H. Dan,; S. C. Yu, Enhancement of multiple-phonon resonant Raman scattering in co-doped ZnO nanorods. Appl. Phys. Lett. 2008, 93, 082110.
[43]
Q. Zhang,; J. Zhang,; M. I. B. Utama,; B. Peng,; M. de la Mata,; J. Arbiol,; Q. H. Xiong, Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy. Phys. Rev. B 2012, 85, 085418.
[44]
H. Dery,; Y. Song, Polarization analysis of excitons in monolayer and bilayer transition-metal dichalcogenides. Phys. Rev. B 2015, 92, 125431.
[45]
D. A. Qiu,; F. H. Da Jornada,; S. G. Louie, Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 2013, 111, 216805.
[46]
P. Pringsheim, Zwei bemerkungen über den unterschied von lumineszenz- und temperaturstrahlung. Z. Physik 1929, 57, 739-746.
[47]
L. D. Landau, On the thermodynamics of photoluminescence. In Collected Papers of L. D. Landau; D. Ter Haar,, Ed.; Pergamon: Oxford, 1965; pp 461-465.
[48]
Y. F. Gao,; Q. H. Tan,; X. L. Liu,; S. L. Ren,; Y. J. Sun,; D. Meng,; Y. J. Lu,; P. H. Tan,; C. X. Shan,; J. Zhang, Phonon-assisted photoluminescence up-conversion of Silicon-vacancy centers in diamond. J. Phys. Chem. Lett. 2018, 9, 6656-6661.
[49]
J. Zhang,; Q. Zhang,; X. Z. Wang,; L. C. Kwek,; Q. H. Xiong, Resolved- sideband Raman cooling of an optical phonon in semiconductor materials. Nat. Photonics 2016, 10, 600-605.
[50]
D. V. Seletskiy,; R. Epstein,; M. Sheik-Bahae, Laser cooling in solids: Advances and prospects. Rep. Prog. Phys. 2016, 79, 096401.
[51]
R. I. Epstein,; M. I. Buchwald,; B. C. Edwards,; T. R. Gosnell,; C. E. Mungan, Observation of laser-induced fluorescent cooling of a solid. Nature 1995, 377, 500-503.
[52]
S. Melgaard,; D. Seletskiy,; V. Polyak,; Y. Asmerom,; M. Sheik-Bahae, Identification of parasitic losses in Yb:YlF and prospects for optical refrigeration down to 80 K. Opt. Express 2014, 22, 7756-7764.
[53]
J. Zhang,; D. H. Li,; R. J. Chen,; Q. H. Xiong, Laser cooling of a semiconductor by 40 Kelvin. Nature 2013, 493, 504-508.
[54]
A. M. Jones,; H. Y. Yu,; J. R. Schaibley,; J. Q. Yan,; D. G. Mandrus,; T. Taniguchi,; K. Watanabe,; H. Dery,; W. Yao,; X. D. Xu, Excitonic luminescence upconversion in a two-dimensional semiconductor. Nat. Phys. 2016, 12, 323-327.
[55]
J. Jadczak,; L. Bryja,; J. Kutrowska-Girzycka,; P. Kapuściński,; M. Bieniek,; Y. S. Huang,; P. Hawrylak, Room temperature multi- phonon upconversion photoluminescence in monolayer semiconductor WS2. Nat. Commun. 2019, 10, 107.
[56]
W. D. Phillips, Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 1998, 70, 721-741.
[57]
D. J. Wineland, Superposition, entanglement, and raising Schrödinger’s cat. Int. J. Mod. Phys. A 2014, 29, 1430027.
[58]
F. Diedrich,; J. C. Bergquist,; W. M. Itano,; D. J. Wineland, Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 1989, 62, 403-406.
[59]
M. Aspelmeyer,; T. J. Kippenberg,; F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391-1452.
[60]
A. A. Clerk,; M. H. Devoret,; S. M. Girvin,; F. Marquardt,; R. J. Schoelkopf, Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 2010, 82, 1155-1208.
[61]
S. M. Spillane,; T. J. Kippenberg,; K. J. Vahala, Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 2002, 415, 621-623.
[62]
G. Güntherodt,; R. Zeyher, Spin-dependent Raman scattering in magnetic semiconductors. In Light Scattering in Solids IV: Electronics Scattering, Spin Effects, Sers, and Morphic Effects; M. Cardona,; G. Güntherodt,, Eds.; Springer: Berlin, Heidelberg, 1984; pp 203-242.
[63]
J. Q. Xu,; A. Habib,; S. Kumar,; F. Wu,; R. Sundararaman,; Y. Ping, Spin- phonon relaxation from a universal ab initio density-matrix approach [Online]. https://ui.adsabs.harvard.edu/abs/2019arXiv191014198X (accessed October 01, 2019).
[64]
P. Boross,; B. Dóra,; A. Kiss,; F. Simon, A unified theory of spin- relaxation due to spin-orbit coupling in metals and semiconductors. Sci. Rep. 2013, 3, 3233.
[65]
R. J. Elliott, Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 1954, 96, 266-279.
[66]
Y. Yafet, g factors and spin-lattice relaxation of conduction electrons. Solid State Phys. 1963, 14, 1-98.
[67]
M. Hatami,; G. E. W. Bauer,; S. Takahashi,; S. Maekawa, Thermoelectric spin diffusion in a ferromagnetic metal. Solid State Commun. 2010, 150, 480-484.
[68]
K. Uchida,; S. Takahashi,; K. Harii,; J. Ieda,; W. Koshibae,; K. Ando,; S. Maekawa,; E. Saitoh, Observation of the spin Seebeck effect. Nature 2008, 455, 778-781.
[69]
M. I. D’Yakonov,; V. I. Perel’, Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov. Phys. Solid State 1972, 13, 3023-3026.
[70]
I. Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241-255.
[71]
T. Moriya, New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 1960, 4, 228-230.
[72]
M. D. Stiles,; A. Zangwill, Anatomy of spin-transfer torque. Phys. Rev. B 2002, 66, 014407.
[73]
G. L. Bir,; A. G. Aronov,; G. E. Pikus, Spin relaxation of electrons due to scattering by holes. Sov. Phys. JETP 1976, 42, 705.
[74]
M. I. D’Yakonov,; V. I. Perel', Optical orientation in a system of electrons and lattice nuclei in semiconductors. Theory. Sov. Phys. JETP 1974, 38, 177.
[75]
D. Jacobs, The Raman effect. Vol. 1. Principles edited by A. Anderson. Acta Crystallogr. Sect. A 1972, 28, 301.
[76]
H. Adachi,; K. I. Uchida,; E. Saitoh,; S. Maekawa, Theory of the spin seebeck effect. Rep. Prog. Phys. 2013, 76, 036501.
[77]
J. Xiao,; G. E. W. Bauer,; K. C. Uchida,; E. Saitoh,; S. Maekawa, Theory of magnon-driven spin seebeck effect. Phys. Rev. B 2010, 81, 214418.
[78]
S. Hoffman,; K. Sato,; Y. Tserkovnyak, Landau-lifshitz theory of the longitudinal spin seebeck effect. Phys. Rev. B 2013, 88, 064408.
[79]
C. M. Jaworski,; J. Yang,; S. Mack,; D. D. Awschalom,; R. C. Myers,; J. P. Heremans, Spin-Seebeck effect: A phonon driven spin distribution. Phys. Rev. Lett. 2011, 106, 186601.
[80]
C. M. Jaworski,; J. Yang,; S. Mack,; D. Awschalom,; J. P. Heremans,; R. C. Myers, Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 2010, 9, 898-903.
[81]
K. Uchida,; J. Xiao,; H. Adachi,; J. Ohe,; S. Takahashi,; J. Ieda,; T. Ota,; Y. Kajiwara,; H. Umezawa,; H. Kawai, et al. Spin seebeck insulator. Nat. Mater. 2010, 9, 894-897.
[82]
C. V. Raman,; K. S. Krishnan, A new type of secondary radiation. Nature 1928, 121, 501-502.
[83]
Y. R. Shen, Stimulated Raman scattering. In Light Scattering in Solids I: Introductory Concepts; M. Cardona,, Ed.; Springer: Berlin, Heidelberg, 1983; pp 275-329.
[84]
L. M. Malard, Raman scattering in bilayer graphene: Probing phonons, electrons and electron-phonon interactions. In APS March Meeting Abstracts, 2009, p L26.003.
[85]
A. H. Castro Neto,; F. Guinea,; N. M. R. Peres,; K. S. Novoselov,; A. K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.
[86]
A. K. Geim,; K. S. Novoselov, The rise of graphene. Nat. Mater. 2007, 6, 183-191.
[87]
Y. M. Lin,; C. Dimitrakopoulos,; K. A. Jenkins,; D. B. Farmer,; H. Y. Chiu,; A. Grill,; P. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662.
[88]
F. Torrisi,; T. Hasan,; W. P. Wu,; Z. P. Sun,; A. Lombardo,; T. S. Kulmala,; G. W. Hsieh,; S. Jung,; F. Bonaccorso,; P. J. Paul, et al. Inkjet- printed graphene electronics. ACS Nano 2012, 6, 2992-3006.
[89]
L. Miao,; J. B. Wu,; J. J. Jiang,; P. Liang, First-principles study on the synergistic mechanism of SnO2 and graphene as a lithium ion battery anode. J. Phys. Chem. C 2013, 117, 23-27.
[90]
Z. P. Sun,; T. Hasan,; F. Torrisi,; D. Popa,; G. Privitera,; F. Q. Wang,; F. Bonaccorso,; D. M. Basko,; A. C. Ferrari, Graphene mode-locked ultrafast laser. ACS Nano 2010, 4, 803-810.
[91]
P. H. Tan,; C. Y. Hu,; J. Dong,; W. C. Shen,; B. F. Zhang, Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker. Phys. Rev. B 2001, 64, 214301.
[92]
P. H. Tan,; L. An,; L. Q. Liu,; Z. X. Guo,; R. Czerw,; D. L. Carroll,; P. M. Ajayan,; N. Zhang,; H. L. Guo, Probing the phonon dispersion relations of graphite from the double-resonance process of Stokes and anti-Stokes Raman scatterings in multiwalled carbon nanotubes. Phys. Rev. B 2002, 66, 245410.
[93]
C. F. Chen,; C. H. Park,; B. W. Boudouris,; J. Horng,; B. S. Geng,; C. Girit,; A. Zettl,; M. F. Crommie,; R. A. Segalman,; S. G. Louie, et al. Controlling inelastic light scattering quantum pathways in graphene. Nature 2011, 471, 617-620.
[94]
P. H. Tan,; W. P. Han,; W. J. Zhao,; Z. H. Wu,; K. Chang,; H. Wang,; Y. F. Wang,; N. Bonini,; N. Marzari,; N. Pugno, et al. The shear mode of multilayer graphene. Nat. Mater. 2012, 11, 294-300.
[95]
J. B. Wu,; X. Zhang,; M. Ijäs,; W. P. Han,; X. F. Qiao,; X. L. Li,; D. S. Jiang,; A. C. Ferrari,; P. H. Tan, Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 2014, 5, 5309.
[96]
A. Splendiani,; L. Sun,; Y. B. Zhang,; T. S. Li,; J. Kim,; C. Y. Chim,; G. Galli,; F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
[97]
Y. L. Li,; Y. Rao,; K. F. Mak,; Y. M. You,; S. Y. Wang,; C. R. Dean,; T. F. Heinz, Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329-3333.
[98]
J. Xiao,; Z. L. Ye,; Y. Wang,; H. Y. Zhu,; Y. Wang,; X. Zhang, Nonlinear optical selection rule based on valley-exciton locking in monolayer WS2. Light: Sci. Appl. 2015, 4, e366.
[99]
B. R. Zhu,; H. L. Zeng,; J. F. Dai,; Z. R. Gong,; X. D. Cui, Anomalously robust valley polarization and valley coherence in bilayer WS2. Proc. Natl. Acad. Sci. USA 2014, 111, 11606-11611.
[100]
K. F. Mak,; C. Lee,; J. Hone,; J. Shan,; T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[101]
Y. L. Li,; A. Chernikov,; X. Zhang,; A. Rigosi,; H. M. Hill,; A. M. van der Zande,; D. A. Chenet,; E. M. Shih,; J. Hone,; T. F. Heinz, Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 2014, 90, 205422.
[102]
M. R. Molas,; C. Faugeras,; A. O. Slobodeniuk,; K. Nogajewski,; M. Bartos,; D. M. Basko,; M. Potemski, Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Mater. 2017, 4, 021003.
[103]
Y. Zhou,; G. Scuri,; D. S. Wild,; A. A. High,; A. Dibos,; L. A. Jauregui,; C. Shu,; K. De Greve,; K. Pistunova,; A. Y. Joe, et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 2017, 12, 856-860
[104]
K. D. Park,; T. Jiang,; G. Clark,; X. D. Xu,; M. B. Raschke, Radiative control of dark excitons at room temperature by nano- optical antenna-tip purcell effect. Nat. Nanotechnol. 2018, 13, 59-64.
[105]
P. Y. Yu,; Y. R. Shen, Multiple resonance effects on Raman scattering at the yellow-exciton series of Cu2O. Phys. Rev. Lett. 1974, 32, 373-376.
[106]
H. Y. Zhu,; J. Yi,; M. Y. Li,; J. Xiao,; L. F. Zhang,; C. W. Yang,; R. A. Kaindl,; L. J. Li,; Y. Wang,; X. Zhang, Observation of chiral phonons. Science 2018, 359, 579-582.
[107]
X. T. Chen,; X. Lu,; S. Dubey,; Q. Yao,; S. Liu,; X. Z. Wang,; Q. H. Xiong,; L. F. Zhang,; A. Srivastava, Entanglement of single- photons and chiral phonons in atomically thin WSe2. Nat. Phys. 2019, 15, 221-227.
[108]
C. H. Jin,; J. Kim,; J. Suh,; Z. W. Shi,; B. Chen,; X. Fan,; M. Kam,; K. Watanabe,; T. Taniguchi,; S. Tongay, et al. Interlayer electron- phonon coupling in WSe2/hBN heterostructures. Nat. Phys. 2017, 13, 127-131.
[109]
G. S. N. Eliel,; M. V. O. Moutinho,; A. C. Gadelha,; A. Righi,; L. C. Campos,; H. B. Ribeiro,; P. W. Chiu,; K. Watanabe,; T. Taniguchi,; P. Puech, et al. Intralayer and interlayer electron-phonon interactions in twisted graphene heterostructures. Nat. Commun. 2018, 9, 1221.
[110]
H. Li,; J. B. Wu,; F. R. Ran,; M. L. Lin,; X. L. Liu,; Y. Y. Zhao,; X. Lu,; Q. H. Xiong,; J. Zhang,; W. Huang, et al. Interfacial interactions in van der Waals heterostructures of MoS2 and graphene. ACS Nano 2017, 11, 11714-11723.
[111]
T. J. Peltonen,; R. Ojajärvi,; T. T. Heikkilä, Mean-field theory for superconductivity in twisted bilayer graphene. Phys. Rev. B 2018, 98, 220504(R).
[112]
B. Hunt,; J. D. Sanchez-Yamagishi,; A. F. Young,; M. Yankowitz,; B. J. LeRoy,; K. Watanabe,; T. Taniguchi,; P. Moon,; M. Koshino,; P. Jarillo-Herrero, et al. Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427-1430.
[113]
C. R. Dean,; L. Wang,; P. Maher,; C. Forsythe,; F. Ghahari,; Y. Gao,; J. Katoch,; M. Ishigami,; P. Moon,; M. Koshino, et al. Hofstadter’s butterfly and the fractal quantum Hall effect in Moiré superlattices. Nature 2013, 497, 598-602.
[114]
J. P. Liu,; X. Dai, Anomalous hall effect, magneto-optical properties, and nonlinear optical properties of twisted graphene systems. npj Comput. Mater. 2020, 6, 57.
[115]
W. T. Hsu,; Z. A. Zhao,; L. J. Li,; C. H. Chen,; M. H. Chiu,; P. S. Chang,; Y. C. Chou,; W. H. Chang, Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 2014, 8, 2951-2958.
[116]
K. Tran,; G. Moody,; F. C. Wu,; X. B. Lu,; J. Choi,; K. Kim,; A. Rai,; D. A. Sanchez,; J. M. Quan,; A. Singh, et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71-75.
[117]
M. L. Lin,; Q. H. Tan,; J. B. Wu,; X. S. Chen,; J. H. Wang,; Y. H. Pan,; X. Zhang,; X. Cong,; J. Zhang,; W. Ji, et al. Moiré phonons in twisted bilayer MoS2. ACS Nano 2018, 12, 8770-8780.
[118]
H. K. D. H. Bhadeshia,; C. M. Wayman, Chapter 9—Phase transformations: Nondiffusive. In Physical Metallurgy, 5th ed.; D. E. Laughlin,; K. Hono,, Eds.; Elsevier: Oxford, 2014; pp 1021-1072.
[119]
X. X. Xi,; L. Zhao,; Z. F. Wang,; H. Berger,; L. Forró,; J. Shan,; K. F. Mak, Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765-769.
[120]
M. Calandra,; I. I. Mazin,; F. Mauri, Effect of dimensionality on the charge-density wave in few-layer 2H-NbSe2. Phys. Rev. B 2009, 80, 241108(R).
[121]
F. Liang,; H. J. Xu,; X. Wu,; C. L. Wang,; C. Luo,; J. Zhang, Raman spectroscopy characterization of two-dimensional materials. Chin. Phys. B 2018, 27, 037802.
[122]
P. Goli,; J. Khan,; D. Wickramaratne,; R. K. Lake,; A. A. Balandin, Charge density waves in exfoliated films of van der Waals materials: Evolution of Raman spectrum in TiSe2. Nano Lett. 2012, 12, 5941-5945.
[123]
P. Hajiyev,; C. X. Cong,; C. Y. Qiu,; T. Yu, Contrast and Raman spectroscopy study of single- and few-layered charge density wave material: 2H-TaSe2. Sci. Rep. 2013, 3, 2593.
[124]
M. Z. Hasan,; C. L. Kane, Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045-3067.
[125]
X. T. Zhu,; C. Howard,; J. D. Guo,; M. El-Batanouny, Electron- phonon coupling on the surface of tpological insulators [Online]. https://ui.adsabs.harvard.edu/abs/2013arXiv1307.4559Z (accessed July 01, 2013).
[126]
H. J. Zhang,; C. X. Liu,; X. L. Qi,; X. Dai,; Z. Fang,; S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438-442.
[127]
Y. Zhang,; K. He,; C. Z. Chang,; C. L. Song,; L. L. Wang,; X. Chen,; J. F. Jia,; Z. Fang,; X. Dai,; W. Y. Shan, et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two- dimensional limit. Nat. Phys. 2010, 6, 584-588.
[128]
H. L. Peng,; K. J. Lai,; D. Kong,; S. Meister,; Y. L. Chen,; X. L. Qi,; S. C. Zhang,; Z. X. Shen,; Y. Cui, Aharonov-Bohm interference in topological insulator nanoribbons. Nat. Mater. 2010, 9, 225-229.
[129]
J. Zhang,; Z. P. Peng,; A. Soni,; Y. Y. Zhao,; Y. Xiong,; B. Peng,; J. B. Wang,; M. S. Dresselhaus,; Q. H. Xiong, Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 2011, 11, 2407-2414.
[130]
A. D. LaForge,; A. Frenzel,; B. C. Pursley,; T. Lin,; X. F. Liu,; J. Shi,; D. N. Basov, Optical characterization of Bi2Se3 in a magnetic field: Infrared evidence for magnetoelectric coupling in a topological insulator material. Phys. Rev. B 2010, 81, 125120.
[131]
J. Qi,; X. Chen,; W. Yu,; P. Cadden-Zimansky,; D. Smirnov,; N. H. Tolk,; I. Miotkowski,; H. Cao,; Y. P. Chen,; Y. Wu, et al. Ultrafast carrier and phonon dynamics in Bi2Se3 crystals. Appl. Phys. Lett. 2010, 97, 182102.
[132]
D. Hsieh,; Y. Xia,; D. Qian,; L. Wray,; J. H. Dil,; F. Meier,; J. Osterwalder,; L. Patthey,; J. G. Checkelsky,; N. P. Ong, et al. A tunable topological insulator in the spin helical dirac transport regime. Nature 2009, 460, 1101-1105.
[133]
J. Coulter,; G. B. Osterhoudt,; C. A. C. Garcia,; Y. P. Wang,; V. M. Plisson,; B. Shen,; N. Ni,; K. S. Burch,; P. Narang, Uncovering electron-phonon scattering and phonon dynamics in type-I Weyl semimetals. Phys. Rev. B 2019, 100, 220301(R).
[134]
H. Takagi,; T. Takayama,; G. Jackeli,; G. Khaliullin,; S. E. Nagler, Concept and realization of kitaev quantum spin liquids. Nat. Rev. Phys. 2019, 1, 264-280.
[135]
L. J. Sandilands,; Y. Tian,; K. W. Plumb,; Y. J. Kim,; K. S. Burch, Scattering continuum and possible fractionalized excitations in α-RuCl3. Phys. Rev. Lett. 2015, 114, 147201.
[136]
D. Wulferding,; P. Lemmens,; P. Scheib,; J. Röder,; P. Mendels,; S. Y. Chu,; T. H. Han,; Y. S. Lee, Interplay of thermal and quantum spin fluctuations in the Kagome lattice compound herbertsmithite. Phys. Rev. B 2010, 82, 144412.
[137]
D. V. Pilon,; C. H. Lui,; T. H. Han,; D. Shrekenhamer,; A. J. Frenzel,; W. J. Padilla,; Y. S. Lee,; N. Gedik, Spin-induced optical conductivity in the spin-liquid candidate herbertsmithite. Phys. Rev. Lett. 2013, 111, 127401.
[138]
R. Coldea,; D. A. Tennant,; Z. Tylczynski, Extended scattering continua characteristic of spin fractionalization in the two- dimensional frustrated quantum magnet Cs2CuCl4 observed by neutron scattering. Phys. Rev. B 2003, 68, 134424.
[139]
C. T. Kuo,; M. Neumann,; K. Balamurugan,; H. J. Park,; S. Kang,; H. W. Shiu,; J. H. Kang,; B. H. Hong,; M. Han,; T. W. Noh, et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 2016, 6, 20904.
[140]
K. Z. Du,; X. Z. Wang,; Y. Liu,; P. Hu,; M. I. B. Utama,; C. K. Gan,; Q. H. Xiong,; C. Kloc, Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 2016, 10, 1738-1743.
[141]
D. J. Lockwood,; M. G. Cottam, The spin-phonon interaction in FeF2 and MnF2 studied by Raman spectroscopy. J. Appl. Phys. 1988, 64, 5876-5878.
[142]
G. Blumberg,; M. V. Klein, Two-magnon Raman scattering in cuprates: Evidence for antiferromagnetic fluctuations in cuprate superconductors. Phys. C 1994, 235-240: 1099-1100.
[143]
J. Cenker,; B. Huang,; N. Suri,; P. Thijssen,; A. Miller,; T. C. Song,; T. Taniguchi,; K. Watanabe,; M. A. McGuire,; D. Xiao, et al. Direct observation of 2D magnons in atomically thin CrI3[Online]. https://ui.adsabs.harvard.edu/abs/2020arXiv200107025C (accessed January 01, 2020).
[144]
Y. J. Zhang,; X. H. Wu,; B. B. Lyu,; M. H. Wu,; S. X. Zhao,; J. Y. Chen,; M. Y. Jia,; C. S. Zhang,; L. Wang,; X. W. Wang, et al. Magnetic order-induced polarization anomaly of Raman scattering in 2D magnet CrI3. Nano Lett. 2020, 20, 729-734.
[145]
K. Guo,; B. W. Deng,; Z. Liu,; C. F. Gao,; Z. T. Shi,; L. Bi,; L. Zhang,; H. P. Lu,; P. H. Zhou,; L. B. Zhang, et al. Layer dependence of stacking order in nonencapsulated few-layer CrI3. Sci. China Mater. 2020, 63, 413-420.
[146]
Y. Tian,; M. J. Gray,; H. W. Ji,; R. J. Cava,; K. S. Burch, Magneto- elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 2016, 3, 025035.
[147]
Z. Y. Sun,; Y. F. Yi,; T. C. Song,; G. Clark,; B. Huang,; Y. W. Shan,; S. Wu,; D. Huang,; C. L. Gao,; Z. H. Chen, et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 2019, 572, 497-501.
[148]
D. R. Klein,; D. MacNeill,; Q. Song,; D. T. Larson,; S. A. Fang,; M. Y. Xu,; R. A. Ribeiro,; P. C. Canfield,; E. Kaxiras,; R. Comin, et al. Enhancement of interlayer exchange in an ultrathin two- dimensional magnet. Nat. Phys. 2019, 15, 1255-1260.
[149]
B. Huang,; G. Clark,; E. Navarro-Moratalla,; D. R. Klein,; R. Cheng,; K. L. Seyler,; D. Zhong,; E. Schmidgall,; M. A. McGuire,; D. H. Cobden, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270-273.
[150]
J. L. Lado,; J. Fernández-Rossier, On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 2017, 4, 035002.
[151]
I. Lee,; F. G. Utermohlen,; D. Weber,; K. Hwang,; C. Zhang,; J. van Tol,; J. E. Goldberger,; N. Trivedi,; P. C. Hammel, Fundamental spin interactions underlying the magnetic anisotropy in the Kitaev ferromagnet CrI3. Phys. Rev. Lett. 2020, 124, 017201.
[152]
R. Hisatomi,; A. Noguchi,; R. Yamazaki,; Y. Nakata,; A. Gloppe,; Y. Nakamura,; K. Usami, Helicity-changing Brillouin light scattering by magnons in a ferromagnetic crystal. Phys. Rev. Lett. 2019, 123, 207401.
[153]
T. Higuchi,; N. Kanda,; H. Tamaru,; M. Kuwata-Gonokami, Selection rules for light-induced magnetization of a crystal with threefold symmetry: The case of antiferromagnetic NiO. Phys. Rev. Lett. 2011, 106, 047401.
[154]
P. A. Joy,; S. Vasudevan, Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni). Phys. Rev. B 1992, 46, 5425-5433.
[155]
Y. Shiomi,; R. Takashima,; E. Saitoh, Experimental evidence consistent with a magnon nernst effect in the antiferromagnetic insulator MnPS3. Phys. Rev. B 2017, 96, 134425.
[156]
Y. J. Sun,; Q. H. Tan,; X. L. Liu,; Y. F. Gao,; J. Zhang, Probing the magnetic ordering of antiferromagnetic MnPS3 by Raman spectroscopy. J. Phys. Chem. Lett. 2019, 10, 3087-3093.
[157]
A. R. Wildes,; S. J. Kennedy,; T. J. Hicks, True two-dimensional magnetic ordering in MnPS3. J. Phys.: Condens. Matter 1994, 6, L335-L341.
[158]
A. R. Wildes,; M. J. Harris,; K. W. Godfrey, Two-dimensional critical fluctuations in MnPS3. J. Magn. Magn. Mater. 1998, 177-181, 143-144.
[159]
A. R. Wildes,; H. M. Rønnow,; B. Roessli,; M. J. Harris,; K. W. Godfrey, Static and dynamic critical properties of the quasi-two-dimensional antiferromagnet MnPS3. Phys. Rev. B 2006, 74, 094422.
[160]
A. McCreary,; J. R. Simpson,; T. T. Mai,; R. D. McMichael,; J. E. Douglas,; N. Butch,; C. Dennis,; R. Valdés Aguilar,; A. R. Hight Walker, Quasi-two-dimensional magnon identification in antiferromagnetic FePS3 via magneto-Raman spectroscopy. Phys. Rev. B 2020, 101, 064416.
[161]
J. U. Lee,; S. Lee,; J. H. Ryoo,; S. Kang,; T. Y. Kim,; P. Kim,; C. H. Park,; J. G. Park,; H. Cheong, Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 2016, 16, 7433-7438.
[162]
X. Z. Wang,; K. Z. Du,; Y. Y. Fredrik Liu,; P. Hu,; J. Zhang,; Q. Zhang,; M. H. S. Owen,; X. Lu,; C. K. Gan,; P. Sengupta, et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater. 2016, 3, 031009.
[163]
F. Keffer,; C. Kittel, Theory of antiferromagnetic resonance. Phys. Rev. 1952, 85, 329-337.
[164]
L. Brillouin, Diffusion de la lumière et des rayons X par un corps transparent homogène. Ann. Phys. 1922, 9, 88-122.
[165]
L. I. Mandelstam, Light scattering by inhomogeneous media. Zh. Russ. Fiz-Khim. Ova. 1926, 58, 381.
[166]
L. Mandelstam,; G. Landsberg,; M. Leontowitsch, Über die theorie der molekularen lichtzerstreuung in kristallen (klassische theorie). Z. Physik 1930, 60, 334-344.
[167]
E. Gross, Change of wave-length of light due to elastic heat waves at scattering in liquids. Nature 1930, 126, 201-202.
[168]
J. R. Sandercock, Simple stabilization scheme for maintenance of mirror alignment in a scanning February-Perot interferometer. J. Phys. E: Sci. Inst. 1976, 9, 566-569.
[169]
J. R. Sandercock, Brillouin-scattering measurements on silicon and germanium. Phys. Rev. Lett. 1972, 28, 237-240.
[170]
A. Yoshihara,; T. Fujimura,; Y. Oka,; H. Fujisaki,; I. Shirotani, Surface Brillouin scattering in black phosphorus. Phys. Rev. B 1986, 34, 7467-7470.
[171]
D. Cortés-Ortuño,; P. Landeros, Influence of the Dzyaloshinskii- Moriya interaction on the spin-wave spectra of thin films. J. Phys.: Condens. Matter 2013, 25, 156001.
[172]
S. Urazhdin,; V. E. Demidov,; H. Ulrichs,; T. Kendziorczyk,; T. Kuhn,; J. Leuthold,; G. Wilde,; S. O. Demokritov, Nanomagnonic devices based on the spin-transfer torque. Nat. Nanotechnol. 2014, 9, 509-513.
[173]
A. V. Chumak,; V. I. Vasyuchka,; A. A. Serga,; B. Hillebrands, Magnon spintronics. Nat. Phys. 2015, 11, 453-461.
[174]
H. T. Nembach,; J. M. Shaw,; M. Weiler,; E. Jué,; T. J. Silva, Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii-Moriya interaction in metal films. Nat. Phys. 2015, 11, 825-829.
[175]
J. Cho,; N. H. Kim,; S. Lee,; J. S. Kim,; R. Lavrijsen,; A. Solignac,; Y. X. Yin,; D. S. Han,; N. J. J. van Hoof,; H. J. M. Swagten, et al. Thickness dependence of the interfacial Dzyaloshinskii-Moriya interaction in inversion symmetry broken systems. Nat. Commun. 2015, 6, 7635.
[176]
F. T. Arecchi,; E. O. Schulz-Dubois, Laser Handbook; North- Holland Publishing Company: Amsterdam, 1972.
[177]
J. K. Krüger,; A. Marx,; L. Peetz,; R. Roberts,; H. G. Unruh, Simultaneous determination of elastic and optical properties of polymers by high performance Brillouin spectroscopy using different scattering geometries. Colloid. Polym. Sci. 1986, 264, 403-414.
[178]
A. B. Singaraju,; D. Bahl,; L. L. Stevens, Brillouin light scattering: Development of a near century-old technique for characterizing the mechanical properties of materials. AAPS PharmSciTech 2019, 20, 109.
[179]
J. F. Nye, Physical Properties of Crystals; Clarendon Press: Oxford, 1957.
[180]
G. B. Benedek,; K. Fritsch, Brillouin scattering in cubic crystals. Phys. Rev. 1966, 149, 647-662.
[181]
T. Azuhata,; M. Takesada,; T. Yagi,; A. Shikanai,; S. F. Chichibu,; K. Torii,; A. Nakamura,; T. Sota,; G. Cantwell,; D. B. Eason, et al. Brillouin scattering study of ZnO. J. Appl. Phys. 2003, 94, 968-972.
[182]
M. H. Grimsditch,; A. K. Ramdas, Brillouin scattering in diamond. Phys. Rev. B 1975, 11, 3139-3148.
[183]
K. Uchida,; H. Adachi,; T. An,; T. Ota,; M. Toda,; B. Hillebrands,; S. Maekawa,; E. Saitoh, Long-range spin Seebeck effect and acoustic spin pumping. Nat. Mater. 2011, 10, 737-741.
[184]
K. An,; K. S. Olsson,; A. Weathers,; S. Sullivan,; X. Chen,; X. Li,; L. G. Marshall,; X. Ma,; N. Klimovich,; J. S. Zhou, et al. Magnons and phonons optically driven out of local equilibrium in a magnetic insulator. Phys. Rev. Lett. 2016, 117, 107202.
[185]
P. C. Lou,; L. de Sousa Oliveira,; C. Tang,; A. Greaney,; S. Kumar, Spin phonon interactions and magneto-thermal transport behavior in p-Si. Solid State Commun. 2018, 283, 37-42.
[186]
A. L. Sukstanskii,; V. V. Tarasenko, Dynamics of domain walls in ultrathin magnetic films. J. Exp. Theor. Phys. 1997, 85, 804-811.
[187]
K. W. Kim,; H. W. Lee,; K. J. Lee,; M. D. Stiles, Chirality from interfacial spin-orbit coupling effects in magnetic bilayers. Phys. Rev. Lett. 2013, 111, 216601.
[188]
A. Fert,; V. Cros,; J. Sampaio, Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152-156.
[189]
R. K. Dumas,; J. Åkerman, Spintronics: Channelling spin waves. Nat. Nanotechnol. 2014, 9, 503-504.
[190]
R. G. Ulbrich,; C. Weisbuch, Resonant Brillouin scattering of excitonic polaritons in gallium arsenide. Phys. Rev. Lett. 1977, 38, 865-868.
[191]
J. J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 1958, 112, 1555-1567.
[192]
T. Byrnes,; N. Y. Kim,; Y. Yamamoto, Exciton-polariton condensates. Nat. Phys. 2014, 10, 803-813.
[193]
W. Brenig,; R. Zeyher,; J. L. Birman, Spatial dispersion effects in resonant polariton scattering. II. Resonant Brillouin scattering. Phys. Rev. B 1972, 6, 4617-4622.
[194]
A. V. Kavokin,; J. J. Baumberg,; G. Malpuech,; F. P. Laussy, Microcavities; Oxford University Press: Oxford, 2017.
[195]
E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures; Alpha Science: Harrow, UK, 2005.
[196]
M. Cardona,; R. Merlin, Light scattering in solids IX. In Light Scattering in Solid IX; M. Cardona,; R. Merlin,, Eds.; Springer: Berlin, Heidelberg, 2006; pp 1-14.
[197]
B. Jusserand,; A. Fainstein,; R. Ferreira,; S. Majrab,; A. Lemaitre, Dispersion and damping of multiple quantum-well polaritons from resonant Brillouin scattering by folded acoustic modes. Phys. Rev. B 2012, 85, 041302(R).
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 April 2020
Revised: 05 June 2020
Accepted: 19 June 2020
Published: 27 July 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

J. Z. acknowledges support from Beijing Natural Science Foundation (No. JQ18014), the National Basic Research Program of China (Nos. 2016YFA0301200 and 2017YFA0303401), Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB28000000) and the National Natural Science Foundation of China (No. 51527901).

Return