Journal Home > Volume 14 , Issue 6

1T phase of transition metal dichalcogenides (TMDCs) formed by group 10 transition metals (e.g. Pt, Pd) have attracted increasing interests due to their novel properties and potential device applications. Synthesis of large scale thin films with controlled phase is critical especially considering that these materials have relatively strong interlayer interaction and are difficult to exfoliate. Here we report the growth of centimeter-scale PtTe, 1T-PtTe2 and 1T-PtSe2 films via direct deposition of Pt metals followed by tellurization or selenization. We find that by controlling the Te flux, a hitherto-unexplored PtTe phase can also be obtained, which can be further tuned into PtTe2 by high temperature annealing under Te flux. These films with different thickness can be grown on a wide range of substrates, including NaCl which can be further dissolved to obtain free-standing PtTe2 or PtSe2 films. Moreover, a systematic thickness dependent resistivity and Hall conductivity measurements show that distinguished from the semiconducting PtSe2 with hole carriers, PtTe2 and PtTe films are metallic. Our work opens new opportunities for investigating the physical properties and potential applications of group 10 TMDC films and the new monochalcogenide PtTe film.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Growth of large scale PtTe, PtTe2 and PtSe2 films on a wide range of substrates

Show Author's information Kenan Zhang1,§Meng Wang1,§Xue Zhou1Yuan Wang1Shengchun Shen1Ke Deng1Huining Peng1Jiaheng Li1Xubo Lai1Liuwan Zhang1Yang Wu2Wenhui Duan1,3Pu Yu1,3Shuyun Zhou1,3( )
State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
Department of Mechanical Engineering and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
Collaborative Innovation Center of Quantum Matter, Beijing 100084, China

§ Kenan Zhang and Meng Wang contributed equally to this work.

Abstract

1T phase of transition metal dichalcogenides (TMDCs) formed by group 10 transition metals (e.g. Pt, Pd) have attracted increasing interests due to their novel properties and potential device applications. Synthesis of large scale thin films with controlled phase is critical especially considering that these materials have relatively strong interlayer interaction and are difficult to exfoliate. Here we report the growth of centimeter-scale PtTe, 1T-PtTe2 and 1T-PtSe2 films via direct deposition of Pt metals followed by tellurization or selenization. We find that by controlling the Te flux, a hitherto-unexplored PtTe phase can also be obtained, which can be further tuned into PtTe2 by high temperature annealing under Te flux. These films with different thickness can be grown on a wide range of substrates, including NaCl which can be further dissolved to obtain free-standing PtTe2 or PtSe2 films. Moreover, a systematic thickness dependent resistivity and Hall conductivity measurements show that distinguished from the semiconducting PtSe2 with hole carriers, PtTe2 and PtTe films are metallic. Our work opens new opportunities for investigating the physical properties and potential applications of group 10 TMDC films and the new monochalcogenide PtTe film.

Keywords: PtSe2, transition metal dichalcogenides (TMDCs), selenization, tellurization, PtTe2, PtTe

References(44)

[1]
Q. H. Wang,; K. Kalantar-Zadeh,; A. Kis,; J. N. Coleman,; M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[2]
M. Chhowalla,; H. S. Shin,; G. Eda,; L. J. Li,; K. P. Loh,; H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[3]
X. D. Xu,; W. Yao,; D. Xiao,; T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343-350.
[4]
G. B. Liu,; D. Xiao,; Y. G. Yao,; X. D. Xu,; W. Yao, Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2643-2663.
[5]
M. Z. Yan,; H. Q. Huang,; K. N. Zhang,; E. Y. Wang,; W. Yao,; K. Deng,; G. L. Wan,; H. Y. Zhang,; M. Arita,; H. T. Yang, et al. Lorentz- violating type-II dirac fermions in transition metal dichalcogenide PtTe2. Nat. Commun. 2016, 8, 257.
[6]
H. Q. Huang,; S. Y. Zhou,; W. H. Duan, Type-II dirac fermions in the PtSe2 class of transition metal dichalcogenides. Phys. Rev. B 2016, 94, 121117.
[7]
K. N. Zhang,; M. Z. Yan,; H. X. Zhang,; H. Q. Huang,; M. Arita,; Z. Sun,; W. H. Duan,; Y. Wu,; S. Y. Zhou, Experimental evidence for type-II Dirac semimetal in PtSe2. Phys. Rev. B 2017, 96, 125102.
[8]
Y. L. Wang,; L. F. Li,; W. Yao,; S. R. Song,; J. T. Sun,; J. B. Pan,; X. Ren,; C. Li,; E. Okunishi,; Y. Q. Wang, et al. A new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015, 15, 4013-4018.
[9]
W. Yao,; E. Y. Wang,; H. Q. Huang,; K. Deng,; M. Z. Yan,; K. N. Zhang,; K. Miyamoto,; T. Okuda,; L. F. Li,; Y. L. Wang, et al. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film. Nat. Commun. 2017, 8, 14216.
[10]
S. Nakosai,; Y. Tanaka,; N. Nagaosa, Topological superconductivity in bilayer Rashba system. Phys. Rev. Lett. 2012, 108, 147003.
[11]
C. X. Liu, Unconventional superconductivity in bilayer transition metal dichalcogenides. Phys. Rev. Lett. 2017, 118, 087001.
[12]
Y. Nakamura,; Y. Yanase, Odd-parity superconductivity in bilayer transition metal dichalcogenides. Phys. Rev. B 2017, 96, 054501.
[13]
C. Cheng,; J. T. Sun,; X. R. Chen,; S. Meng, Hidden spin polarization in the 1T-phase layered transition-metal dichalcogenides MX2 (M = Zr, Hf; X = S, Se, Te). Sci. Bull. 2018, 63, 85-91.
[14]
L. D. Yuan,; Q. H. Liu,; X. W. Zhang,; J. W. Luo,; S. S. Li,; A. Zunger, Uncovering and tailoring hidden Rashba spin-orbit splitting in centrosymmetric crystals. Nat. Commun. 2019, 10, 906.
[15]
W. X. Zhang,; Z. S. Huang,; W. L. Zhang,; Y. R. Li, Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731-1737.
[16]
Z. S. Huang,; W. X. Zhang,; W. L. Zhang, Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature. Materials 2016, 9, 716.
[17]
Y. D. Zhao,; J. S. Qiao,; Z. H. Yu,; P. Yu,; K. Xu,; S. P. Lau,; W. Zhou,; Z. Liu,; X. R. Wang,; W. Ji, et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230.
[18]
C. Yim,; K. Lee,; N. McEvoy,; M. O’Brien,; S. Riazimehr,; N. C. Berner,; C. P. Cullen,; J. Kotakoski,; J. C. Meyer,; M. C. Lemme, et al. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 2016, 10, 9550-9558.
[19]
Z. G. Wang,; Q. Li,; F. Besenbacher,; M. D. Dong, Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 2016, 28, 10224-10229.
[20]
X. C. Yu,; P. Yu,; D. Wu,; B. Singh,; Q. S. Zeng,; H. Lin,; W. Zhou,; J. H. Lin,; K. Suenaga,; Z. Liu, et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.
[21]
S. Ye,; W. C. Oh, Demonstration of enhanced the photocatalytic effect with PtSe2 and TiO2 treated large area graphene obtained by CVD method. Mater. Sci. Semicond. Process. 2016, 48, 106-114.
[22]
M. Sajjad,; E. Montes,; N. Singh,; U. Schwingenschlögl, Superior gas sensing properties of monolayer PtSe2. Adv. Mater. Interfaces 2017, 4, 1600911.
[23]
X. Lin,; C. Lu,; Y. Shao,; Y. Y. Zhang,; X. Wu,; J. B. Pan,; L. Gao,; S. Y. Zhu,; K. Qian,; Y. F. Zhang, et al. Intrinsically patterned two- dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater. 2017, 16, 717-721.
[24]
M. O’Brien,; N. McEvoy,; C. Motta,; J. Y. Zheng,; N. C. Berner,; J. Kotakoski,; K. Elibol,; T. J. Pennycook,; J. C. Meyer,; C. Yim, et al. Raman characterization of platinum diselenide thin films. 2D Mater. 2016, 3, 021004.
[25]
M. Z. Yan,; E. Y. Wang,; X. Zhou,; G. Q. Zhang,; H. Y. Zhang,; K. N. Zhang,; W. Yao,; N. P. Lu,; S. Z. Yang,; S. L. Wu, et al. High quality atomically thin PtSe2 films grown by molecular beam epitaxy. 2D Mater. 2017, 4, 045015.
[26]
J. D. Zhou,; J. H. Lin,; X. W. Huang,; Y. Zhou,; Y. Chen,; J. Xia,; H. Wang,; Y. Xie,; H. M. Yu,; J. C. Lei, et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355-359.
[27]
S. Hao,; J. W. Zeng,; T. Xu,; X. Cong,; C. Y. Wang,; C. C. Wu,; Y. J. Wang,; X. W. Liu,; T. J. Cao,; G. X. Su, et al. Low-temperature eutectic synthesis of PtTe2 with weak antilocalization and controlled layer thinning. Adv. Funct. Mater. 2018, 28, 1803746.
[28]
H. F. Ma,; P. Chen,; B. Li,; J. Li,; R. Q. Ai,; Z. W. Zhang,; G. Z. Sun,; K. K. Yao,; Z. Y. Lin,; B. Zhao, et al. Thickness-tunable synthesis of ultrathin type-II Dirac semimetal PtTe2 single crystals and their thickness-dependent electronic properties. Nano. Lett. 2018, 18, 3523-3529.
[29]
K. Deng,; M. Z. Yan,; C. P. Yu,; J. H. Li,; X. Zhou,; K. N. Zhang,; Y. X. Zhao,; K. Miyamoto,; T. Okuda,; W. H. Duan, et al. Crossover from 2D metal to 3D Dirac semimetal in metallic PtTe2 films with local Rashba effect. Sci. Bull. 2019, 64, 1044-1048.
[30]
M. K. Lin,; R. A. B. Villaos,; J. A. Hlevyack,; P. Chen,; R. Y. Liu,; C. H. Hsu,; J. Avila,; S. K. Mo,; F. C. Chuang,; T. C. Chiang, Dimensionality-mediated semimetal-semiconductor transition in ultrathin PtTe2 films. Phys. Rev. Lett. 2020, 124, 036402.
[31]
M. S. Shawkat,; H. S. Chung,; D. Dev,; S. Das,; T. Roy,; T. Jung, Two-dimensional/three-dimensional Schottky junction photovoltaic devices realized by the direct CVD growth of vdW 2D PtSe2 layers on silicon. ACS Appl. Mater. Interfaces 2019, 11, 27251-27258.
[32]
K. Ullah,; S. Ye,; S. B. Jo,; L. Zhu,; K. Y. Cho,; W. C. Oh, Optical and photocatalytic properties of novel heterogeneous PtSe2-graphene/ TiO2 nanocomposites synthesized via ultrasonic assisted techniques. Ultrason. Sonochem. 2014, 21, 1849-1857.
[33]
J. P. Shi,; Y. H. Huan,; M. Hong,; R. Z. Xu,; P. F. Yang,; Z. P. Zhang,; X. L. Zou,; Y. F. Zhang, Chemical vapor deposition grown large-scale atomically thin platinum diselenide with semimetal-semiconductor transition. ACS Nano 2019, 13, 8442-8451.
[34]
A. Ciarrocchi,; A. Avsar,; D. Ovchinnikov,; A. Kis, Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 2018, 9, 919.
[35]
Y. Yang,; X. X. Xue,; Q. J. Chen,; Y. X. Feng, Doping single transition metal atom into PtTe sheet for catalyzing nitrogen reduction and hydrogen evolution reactions. J. Chem. Phys. 2019, 151, 144710.
[36]
Y. Wang,; Y. F. Li,; T. Heine, PtTe Monolayer: Two-dimensional electrocatalyst with high basal plane activity toward oxygen reduction reaction. J. Am. Chem. Soc. 2018, 140, 12732-12735.
[37]
P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[38]
G. Kresse,; D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[39]
G. Kresse,; J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[40]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[41]
S. Grimme,; J. Antony,; S. Ehrlich,; H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[42]
K. Parlinski,; Z. Q. Li,; Y. Kawazoe, First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063-4066.
[43]
F. Grønvold,; E. Røst, The crystal structure of PdSe2 and PdS2. Acta Crystallogr. 1957, 10, 329-331.
[44]
H. J. Xu,; J. W. Wei,; H. G. Zhou,; J. F. Feng,; T. Xu,; H. F. Du,; C. L. He,; Y. Huang; J. W. Zhang,; Y. Z. Liu, et al. High spin Hall conductivity in large-area type-II Dirac semimetal PtTe2. Adv. Mater., in press, .
File
12274_2020_2942_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 March 2020
Revised: 07 June 2020
Accepted: 19 June 2020
Published: 13 July 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11725418 and 21975140), the National Key Basic Research Program of China (Nos. 2015CB921001, 2016YFA0301001 and 2016YFA0301004), Science Challenge Project (No. TZ20164500122), the Basic Science Center Program of NSFC (No. 51788104), Beijing Advanced Innovation Center of Future Chip (ICFC) and Tsinghua University Initiative Scientific Research Program.

Return