Journal Home > Volume 13 , Issue 10

There are various mechanisms of light emission in carbon nanotubes (CNTs), which give rise to a wide range of spectral emission characteristics that provide important information regarding the underlying physical processes that lead to photon emission. Here, we report spectra obtained from individual suspended CNT dual-gate field effect transistor (FET) devices under different gate and bias conditions. By applying opposite voltages to the gate electrodes (i.e., Vg1 = -Vg2), we are able to create a pn-junction within the suspended region of the CNT. Under forward bias conditions, the spectra exhibit a peak corresponding to E11 exciton emission via thermal (i.e., blackbody) emission occurring at electrical powers around 8 µW, which corresponds to a power density of approximately 0.5 MW/cm2. On the other hand, the spectra observed under reverse bias correspond to impact ionization and avalanche emission, which occurs at electrical powers of ~ 10 nW and exhibits a featureless flat spectrum extending from 1,600 nm to shorter wavelengths up to 600 nm. Here, the hot electrons generated by the high electric fields (~ 0.5 MV/cm) are able to produce high energy photons far above the E11 (ground state) energy. It is somewhat surprising that these devices do not exhibit light emission by the annihilation of electrons and holes under forward bias, as in a light emitting diode (LED). Possible reasons for this are discussed, including Auger recombination.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Broadband electroluminescence from reverse breakdown in individual suspended carbon nanotube pn-junctions

Show Author's information Bo Wang1Sisi Yang1Yu Wang3Younghee Kim4Ragib Ahsan2Rehan Kapadia2Stephen K. Doorn4Han Htoon4Stephen B. Cronin1,2( )
Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract

There are various mechanisms of light emission in carbon nanotubes (CNTs), which give rise to a wide range of spectral emission characteristics that provide important information regarding the underlying physical processes that lead to photon emission. Here, we report spectra obtained from individual suspended CNT dual-gate field effect transistor (FET) devices under different gate and bias conditions. By applying opposite voltages to the gate electrodes (i.e., Vg1 = -Vg2), we are able to create a pn-junction within the suspended region of the CNT. Under forward bias conditions, the spectra exhibit a peak corresponding to E11 exciton emission via thermal (i.e., blackbody) emission occurring at electrical powers around 8 µW, which corresponds to a power density of approximately 0.5 MW/cm2. On the other hand, the spectra observed under reverse bias correspond to impact ionization and avalanche emission, which occurs at electrical powers of ~ 10 nW and exhibits a featureless flat spectrum extending from 1,600 nm to shorter wavelengths up to 600 nm. Here, the hot electrons generated by the high electric fields (~ 0.5 MV/cm) are able to produce high energy photons far above the E11 (ground state) energy. It is somewhat surprising that these devices do not exhibit light emission by the annihilation of electrons and holes under forward bias, as in a light emitting diode (LED). Possible reasons for this are discussed, including Auger recombination.

Keywords: ballistic, avalanche, high-field, band-to-band, photoemission

References(37)

[1]
Ghosh, S.; Bachilo, S. M.; Simonette, R. A.; Beckingham, K. M.; Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 2010, 330, 1656-1659.
[2]
Miyauchi, Y.; Iwamura, M.; Mouri, S.; Kawazoe, T.; Ohtsu, M.; Matsuda, K. Brightening of excitons in carbon nanotubes on dimensionality modification. Nat. Photonics 2013, 7, 715-719.
[3]
Ma, X. D.; Adamska, L.; Yamaguchi, H.; Yalcin, S. E.; Tretiak, S.; Doorn, S. K.; Htoon, H. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes. ACS Nano 2014, 8, 10782-10789.
[4]
Ma, X. D.; Hartmann, N. F.; Baldwin, J. K. S.; Doorn, S. K.; Htoon, H. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat. Nanotechnol. 2015, 10, 671-675.
[5]
Ma, X. D.; Baldwin, J. K. S.; Hartmann, N. F.; Doorn, S. K.; Htoon, H. Solid-state approach for fabrication of photostable, oxygen-doped carbon nanotubes. Adv. Fuct. Mater. 2015, 25, 6157-6164.
[6]
Ma, X. D.; James, A. R.; Hartmann, N. F.; Baldwin, J. K.; Dominguez, J.; Sinclair, M. B.; Luk, T. S.; Wolf, O.; Liu, S.; Doorn, S. K. et al. Solitary oxygen dopant emission from carbon nanotubes modified by dielectric metasurfaces. ACS Nano 2017, 11, 6431-6439.
[7]
Matsunaga, R.; Matsuda, K.; Kanemitsu, Y. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy. Phys. Rev. Lett. 2011, 106, 037404.
[8]
Yuma, B.; Berciaud, S.; Besbas, J.; Shaver, J.; Santos, S.; Ghosh, S.; Weisman, R. B.; Cognet, L.; Gallart, M.; Ziegler, M. et al. Biexciton, single carrier, and trion generation dynamics in single-walled carbon nanotubes. Phys. Rev. B 2013, 87, 205412.
[9]
Högele, A.; Galland, C.; Winger, M.; Imamoğlu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 2008, 100, 217401.
[10]
He, X. W.; Hartmann, N. F.; Ma, X. D.; Kim, Y.; Ihly, R.; Blackburn, J. L.; Gao, W. L.; Kono, J.; Yomogida, Y.; Hirano, A. et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photonics 2017, 11, 577-582.
[11]
Ju, S. Y.; Kopcha, W. P.; Papadimitrakopoulos, F. Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science 2009, 323, 1319-1323.
[12]
Ishii, A.; Uda, T.; Kato, Y. K. Room-temperature single-photon emission from micrometer-long air-suspended carbon nanotubes. Phys. Rev. Appl. 2017, 8, 054039.
[13]
Hofmann, M. S.; Glückert, J. T.; Noé, J.; Bourjau, C.; Dehmel, R.; Högele, A. Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nat. Nanotechnol. 2013, 8, 502-505.
[14]
Walden-Newman, W.; Sarpkaya, I.; Strauf, S. Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes. Nano Lett. 2012, 12, 1934-1941.
[15]
Mueller, T.; Kinoshita, M.; Steiner, M.; Perebeinos, V.; Bol, A. A.; Farmer, D. B.; Avouris, P. Efficient narrow-band light emission from a single carbon nanotube p-n diode. Nat. Nanotechnol. 2010, 5, 27-31.
[16]
Misewich, J. A.; Martel, R.; Avouris; Tsang, J. C.; Heinze, S.; Tersoff, J. Electrically induced optical emission from a carbon nanotube FET. Science 2003, 300, 783-786.
[17]
Freitag, M.; Perebeinos, V.; Chen, J.; Stein, A.; Tsang, J. C.; Misewich, J. A.; Martel, R.; Avouris, P. Hot carrier electroluminescence from a single carbon nanotube. Nano Lett. 2004, 4, 1063-1066.
[18]
Chen, J.; Perebeinos, V.; Freitag, M.; Tsang, J.; Fu, Q.; Liu, J.; Avouris, P. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 2005, 310, 1171-1174.
[19]
Pfeiffer, M. H. P.; Stürzl, N.; Marquardt, C. W.; Engel, M.; Dehm, S.; Hennrich, F.; Kappes, M. M.; Lemmer, U.; Krupke, R. Electroluminescence from chirality-sorted (9,7)-semiconducting carbon nanotube devices. Opt. Express 2011, 19, A1184-A1189.
[20]
Liu, Z. W.; Bushmaker, A.; Aykol, M.; Cronin, S. B. Thermal emission spectra from individual suspended carbon nanotubes. ACS Nano 2011, 5, 4634-4640.
[21]
Wang, B.; Rezaeifar, F.; Chen, J. H.; Yang, S. S.; Kapadia, R.; Cronin, S. B. Avalanche photoemission in suspended carbon nanotubes: Light without Heat. ACS Photonics 2017, 4, 2706-2710.
[22]
Wang, B.; Yang, S. S.; Shen, L.; Cronin, S. B. Ultra-low power light emission via avalanche and sub-avalanche breakdown in suspended carbon nanotubes. ACS Photonics 2018, 5, 4432-4436.
[23]
Bushmaker, A. W.; Deshpande, V. V.; Bockrath, M. W.; Cronin, S. B. Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes. Nano Lett. 2007, 7, 3618-3622.
[24]
Hsu, I. K.; Pettes, M. T.; Aykol, M.; Shi, L.; Cronin, S. B. The effect of gas environment on electrical heating in suspended carbon nanotubes. J. Appl. Phys. 2010, 108, 084307.
[25]
Amer, M.; Bushmaker, A.; Cronin, S. Anomalous kink behavior in the current-voltage characteristics of suspended carbon nanotubes. Nano Res. 2012, 5, 172-180.
[26]
Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Direct observation of born-oppenheimer approximation breakdown in carbon nanotubes. Nano Lett. 2009, 9, 607-611.
[27]
Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Large modulations in the intensity of Raman-scattered light from pristine carbon nanotubes. Phys. Rev. Lett. 2009, 103, 067401.
[28]
Chang, S. W.; Theiss, J.; Hazra, J.; Aykol, M.; Kapadia, R.; Cronin, S. B. Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions. Appl. Phys. Lett. 2015, 107, 053107.
[29]
Deshpande, V. V.; Chandra, B.; Caldwell, R.; Novikov, D. S.; Hone, J.; Bockrath, M. Mott insulating state in ultraclean carbon nanotubes. Science 2009, 323, 106-110.
[30]
Wang, B.; Yang, S. S.; Wang, Y.; Ahsan, R.; He, X. W.; Kim, Y.; Htoon, H.; Kapadia, R.; John, D. D.; Thibeault, B. et al. Auger suppression of incandescence in individual suspended carbon nanotube pn-junctions. ACS Appl. Mater. Interfaces 2020, 12, 11907-11912.
[31]
Chang, S. W.; Bergemann, K.; Dhall, R.; Zimmerman, J.; Forrest, S.; Cronin, S. B. Nonideal diode behavior and bandgap renormalization in carbon nanotube p-n junctions. IEEE Trans. Nanotechnol. 2014, 13, 41-45.
[32]
Freitag, M.; Steiner, M.; Naumov, A.; Small, J. P.; Bol, A. A.; Perebeinos, V.; Avouris, P. Carbon nanotube photo- and electroluminescence in longitudinal electric fields. ACS Nano 2009, 3, 3744-3748.
[33]
Steiner, M.; Freitag, M.; Perebeinos, V.; Naumov, A.; Small, J. P.; Bol, A. A.; Avouris, P. Gate-variable light absorption and emission in a semiconducting carbon nanotube. Nano Lett. 2009, 9, 3477-3481.
[34]
Yasukochi, S.; Murai, T.; Moritsubo, S.; Shimada, T.; Chiashi, S.; Maruyama, S.; Kato, Y. K. Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes. Phys. Rev. B 2011, 84, 121409.
[35]
Yoshida, M.; Popert, A.; Kato, Y. K. Gate-voltage induced trions in suspended carbon nanotubes. Phys. Rev. B 2016, 93, 041402.
[36]
Chynoweth, A. G.; McKay, K. G. Photon emission from avalanche breakdown in silicon. Phys. Rev. 1956, 102, 369-376.
[37]
Van Drieënhuizen, B. P.; Wolffenbuttel, R. F. Optocoupler based on the avalanche light emission in silicon. Sens. Actuators A: Phys. 1992, 31, 229-240.
File
12274_2020_2941_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 November 2019
Revised: 06 June 2020
Accepted: 19 June 2020
Published: 05 October 2020
Issue date: October 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors would like to acknowledge support from the Northrop Grumman-Institute of Optical Nanomaterials and Nanophotonics (NG-ION2) (B. W.). This research was supported by the NSF Award No. CBET-1905357 (S. Y.) and Department of Energy DOE Award No. DE-FG02-07ER46376 (Y. W.). R. K. acknowledges funding from AFOSR Grant No. FA9550-16- 1-0306 and National Science Foundation Award No. 1610604. R. A. acknowledges a USC Provost Graduate Fellowship. A portion of this work was carried out in the University of California Santa Barbara (UCSB) nanofabrication facility. This work was also carried out in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Science user facility. Y. L., S. K. D., and H. H. acknowledge partial support of the LANL LDRD program and Y. L. and H. H. acknowledge support from DOE BES FWP# LANLBES22.

Return