[1]
Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M. The aerobic oxidation of a Pd(II) dimethyl complex leads to selective ethane elimination from a Pd(III) intermediate. J. Am. Chem. Soc. 2012, 134, 2414-2422.
[2]
Shahabi Nejad, M.; Seyedi, N.; Sheibani, H.; Behzadi, S. Synthesis and characterization of Ni(II) complex functionalized silica-based magnetic Nanocatalyst and its application in C-N and C-C cross- coupling reactions. Mol. Divers. 2019, 23, 527-539.
[3]
Zhang, S.; Li, J.; Gao, W.; Qu, Y. Q. Insights into the effects of surface properties of oxides on the catalytic activity of Pd for C-C coupling reactions. Nanoscale 2015, 7, 3016-3021.
[4]
Kumar, R.; van der Eycken, E. V. Recent approaches for C-C bond formation via direct dehydrative coupling strategies. Chem. Soc. Rev. 2013, 42, 1121-1146.
[5]
Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: Versatility and practicality. Angew. Chem., Int. Ed. 2009, 48, 5094-5115.
[6]
Choi, M.; Lee, D. H.; Na, K.; Yu, B. W.; Ryoo, R. High catalytic activity of palladium(II)-exchanged mesoporous sodalite and NaA zeolite for bulky aryl coupling reactions: Reusability under aerobic conditions. Angew. Chem., Int. Ed. 2009, 48, 3673-3676.
[7]
Guerra, J.; Herrero, M. A. Hybrid materials based on Pd nanoparticles on carbon nanostructures for environmentally benign C-C coupling chemistry. Nanoscale 2010, 2, 1390-1400.
[8]
Youn, S. W.; Kim, B. S.; Jagdale, A. R. Pd-catalyzed sequential C-C bond formation and cleavage: Evidence for an unexpected generation of arylpalladium(II) species. J. Am. Chem. Soc. 2012, 134, 11308-11311.
[9]
Wang, D. H.; Mei, T. S.; Yu, J. Q. Versatile Pd(II)-catalyzed C-H activation/aryl-aryl coupling of benzoic and phenyl acetic acids. J. Am. Chem. Soc. 2008, 130, 17676-17677.
[10]
Ishizuka, K.; Seike, H.; Hatakeyama, T.; Nakamura, M. Nickel-catalyzed alkenylative cross-coupling reaction of alkyl sulfides. J. Am. Chem. Soc. 2010, 132, 13117-13119.
[11]
Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M. Stable mononuclear organometallic Pd(III) complexes and their C-C bond formation reactivity. J. Am. Chem. Soc. 2010, 132, 7303-7305.
[12]
Velian, A.; Lin, S. B.; Miller, A. J. M.; Day, M. W.; Agapie, T. Synthesis and C-C coupling reactivity of a dinuclear NiI-NiI complex supported by a terphenyl diphosphine. J. Am. Chem. Soc. 2010, 132, 6296-6297.
[13]
Kim, K.; Jung, Y.; Lee, S.; Kim, M.; Shin, D.; Byun, H.; Cho, S. J.; Song, H.; Kim, H. Directed C-H activation and tandem cross-coupling reactions using palladium nanocatalysts with controlled oxidation. Angew. Chem., Int. Ed. 2017, 56, 6952-6956.
[14]
Lan, G. X.; Quan, Y.; Wang, M. L.; Nash, G. T.; You, E.; Song, Y.; Veroneau, S. S.; Jiang, X. M.; Lin, W. B. Metal-organic layers as multifunctional two-dimensional nanomaterials for enhanced photoredox catalysis. J. Am. Chem. Soc. 2019, 141, 15767-15772.
[15]
Chakraborty, I. N.; Roy, S.; Devatha, G.; Rao, A.; Pillai, P. P. InP/ZnS quantum dots as efficient visible-light photocatalysts for redox and carbon-carbon coupling reactions. Chem. Mater. 2019, 31, 2258-2262.
[16]
Yu, S. J.; Wilson, A. J.; Heo, J.; Jain, P. K. Plasmonic control of multi-electron transfer and C-C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett. 2018, 18, 2189-2194.
[17]
Wang, X. N.; Wang, F. L.; Sang, Y. H.; Liu, H. Full-spectrum solar-light- activated photocatalysts for light-chemical energy conversion. Adv. Energy Mater. 2017, 7, 1700473.
[18]
Neaţu, S.; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc. 2014, 136, 15969-15976.
[19]
Kisch, H. Semiconductor photocatalysis—mechanistic and synthetic aspects. Angew. Chem., Int. Ed. 2013, 52, 812-847.
[20]
Chen, H. R.; Shen, K.; Chen, J. Y.; Chen, X. D.; Li, Y. W. Hollow- ZIF-templated formation of a Zno@C-N-Co core-shell nanostructure for highly efficient pollutant photodegradation. J. Mater. Chem. A 2017, 5, 9937-9945.
[21]
Sheng, H. B.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Urchin-inspired TiO2@MIL-101 double-shell hollow particles: Adsorption and highly efficient photocatalytic degradation of hydrogen sulfide. Chem. Mater. 2017, 29, 5612-5616.
[22]
Pang, X. B.; Chang, W.; Chen, C. C.; Ji, H. W.; Ma, W. H.; Zhao, J. C. Determining the TiO2-photocatalytic aryl-ring-opening mechanism in aqueous solution using oxygen-18 labeled O2 and H2O. J. Am. Chem. Soc. 2014, 136, 8714-8721.
[23]
Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal- organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed. 2016, 128, 3749-3753.
[24]
Li, Z. X.; Yu, C. C.; Wen, Y. Y.; Gao, Y.; Xing, X. F.; Wei, Z. T.; Sun, H.; Zhang, Y. W.; Song, W. Y. Mesoporous hollow Cu-Ni alloy nanocage from core-shell Cu@Ni Nanocube for efficient hydrogen evolution reaction. ACS Catal. 2019, 9, 5084-5095.
[25]
Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116-128.
[26]
Chen, J. X.; Feng, J.; Yang, F.; Aleisa, R.; Zhang, Q.; Yin, Y. D. Space-confined seeded growth of Cu nanorods with strong surface plasmon resonance for photothermal actuation. Angew. Chem., Int. Ed. 2019, 58, 9275-9281.
[27]
Kazuma, E.; Yamaguchi, T.; Sakai, N.; Tatsuma, T. Growth behaviour and plasmon resonance properties of photocatalytically deposited Cu nanoparticles. Nanoscale 2011, 3, 3641-3645.
[28]
Wang, F. F.; Huang, Y. J.; Chai, Z. G.; Zeng, M.; Li, Q.; Wang, Y.; Xu, D. S. Photothermal-enhanced catalysis in core-shell plasmonic hierarchical Cu7S4 microsphere@zeolitic imidazole framework-8. Chem. Sci. 2016, 7, 6887-6893.
[29]
Wang, M. M.; Tang, Y. F.; Jin, Y. D. Modulating catalytic performance of metal-organic framework composites by localized surface plasmon resonance. ACS Catal. 2019, 9, 11502-11514.
[30]
Yin, Z.; Wang, Y.; Song, C. Q.; Zheng, L. H.; Ma, N.; Liu, X.; Li, S. W.; Lin, L. L.; Li, M. Z.; Xu, Y. et al. Hybrid Au-Ag nanostructures for enhanced plasmon-driven catalytic selective hydrogenation through visible light irradiation and surface-enhanced Raman scattering. J. Am. Chem. Soc. 2018, 140, 864-867.
[31]
Zhang, H. B.; Wang, T.; Wang, J. J.; Liu, H. M.; Dao, T. D.; Li, M.; Liu, G. G.; Meng, X. G.; Chang, K.; Shi, L. et al. Surface-plasmon- enhanced photodriven CO2 reduction catalyzed by metal-organic- framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv. Mater. 2016, 28, 3703-3710.
[32]
Atay, T.; Song, J. H.; Nurmikko, A. V. Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime. Nano Lett. 2004, 4, 1627-1631.
[33]
DuChene, J. S.; Tagliabue, G.; Welch, A. J.; Li, X. Q.; Cheng, W. H.; Atwater, H. A. Optical excitation of a nanoparticle Cu/p-NiO photocathode improves reaction selectivity for CO2 reduction in aqueous electrolytes. Nano Lett. 2020, 20, 2348-2358.
[34]
Schünemann, S.; Dodekatos, G.; Tüysüz, H. Mesoporous silica supported Au and AuCu nanoparticles for surface plasmon driven glycerol oxidation. Chem. Mater. 2015, 27, 7743-7750.
[35]
Chen, S.; Tang, F.; Tang, L. Z.; Li, L. D. Synthesis of Cu- nanoparticle hydrogel with self-healing and photothermal properties. ACS Appl. Mater. Interfaces 2017, 9, 20895-20903.
[36]
Dong, L. L.; Ji, G. M.; Liu, Y.; Xu, X.; Lei, P. P.; Du, K. M.; Song, S. Y.; Feng, J.; Zhang, H. J. Multifunctional Cu-Ag2S nanoparticles with high photothermal conversion efficiency for photoacoustic imaging-guided photothermal therapy in vivo. Nanoscale 2018, 10, 825-831.
[37]
Zhou, M.; Zhang, R.; Huang, M.; Lu, W.; Song, S. L.; Melancon, M. P.; Tian, M.; Liang, D.; Li, C. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J. Am. Chem. Soc. 2010, 132, 15351-15358.
[38]
Tian, Q. W.; Hu, J. Q.; Zhu, Y. H.; Zou, R. J.; Chen, Z. G.; Yang, S. P.; Li, R. W.; Su, Q. Q.; Han, Y.; Liu, X. G. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc. 2013, 135, 8571-8577.
[39]
Zhang, Y. J.; Sha, R.; Zhang, L.; Zhang, W. B.; Jin, P. P.; Xu, W. G.; Ding, J. X.; Lin, J.; Qian, J.; Yao, G. Y. et al. Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant Cancer. Nat. Commun. 2018, 9, 4236.
[40]
Chen, L. Y.; Peng, Y.; Wang, H.; Gu, Z. Z.; Duan, C. Y. Synthesis of Au@ZIF-8 single- or multi-core-shell structures for photocatalysis. Chem. Commun. 2014, 50, 8651-8654.
[41]
Kuo, C. H.; Tang, Y.; Chou, L. Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z. P.; Tsung, C. K. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J. Am. Chem. Soc. 2012, 134, 14345-14348.
[42]
Wang, C. L.; Tuninetti, J.; Wang, Z.; Zhang, C.; Ciganda, R.; Salmon, L.; Moya, S.; Ruiz, J.; Astruc, D. Hydrolysis of ammonia- borane over Ni/ZIF-8 nanocatalyst: High efficiency, mechanism, and controlled hydrogen release. J. Am. Chem. Soc. 2017, 139, 11610-11615.
[43]
Fu, F. Y.; Wang, C. L.; Wang, Q.; Martinez-Villacorta, A. M.; Escobar, A.; Chong, H. B.; Wang, X.; Moya, S.; Salmon, L.; Fouquet, E. et al. Highly selective and sharp volcano-type synergistic Ni2Pt@ZIF- 8-catalyzed hydrogen evolution from ammonia borane hydrolysis. J. Am. Chem. Soc. 2018, 140, 10034-10042.
[44]
Li, D. D.; Yu, S. H.; Jiang, H. L. From UV to near-infrared light- responsive metal-organic framework composites: Plasmon and upconversion enhanced photocatalysis. Adv. Mater. 2018, 30, 1707377.
[45]
Liu, C.; Cao, C. Y.; Liu, J.; Wang, X. S.; Zhu, Y. N.; Song, W. G. One methyl group makes a major difference: Shape-selective catalysis by zeolite nanoreactors in liquid-phase condensation reactions. J. Mater. Chem. A 2017, 5, 17464-17469.
[46]
Li, Y. D.; Ruan, Z. H.; He, Y. Z.; Li, J. Z.; Li, K. Q.; Jiang, Y. Q.; Xu, X. Z.; Yuan, Y.; Lin, K. F. In situ fabrication of hierarchically porous G-C3N4 and understanding on its enhanced photocatalytic activity based on energy absorption. Appl. Catal. B Environ. 2018, 236, 64-75.
[47]
Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393-398.