[1]
Service, R. F. Liquid sunshine. Science 2018, 361, 120-123.
[2]
Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321-2325.
[3]
Xia, L.; Yang, J. J.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Fang, W. H.; Asiri, A. M.; Xie, F. Y.; Cui, G. L.; Sun, X. P. Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation. Chem. Commun. 2019, 55, 3371-3374.
[4]
Xue, X. L.; Chen, R. P.; Yan, C. Z.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Ma, L. B.; Zhu, G. Y.; Jin, Z. Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale 2019, 11, 10439-10445.
[5]
Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2020, 13, 209-214.
[6]
Yu, H. J.; Wang, Z. Q.; Yin, S. L.; Li, C. J.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Mesoporous Au3Pd film on Ni foam: A self- supported electrocatalyst for efficient synthesis of ammonia. ACS Appl. Mater. Interfaces 2020, 12, 436-442.
[7]
Wu, T. W.; Kong, W. H.; Zhang, Y.; Xing, Z.; Zhao, J. X.; Wang, T.; Shi, X. F.; Luo, Y. L.; Sun, X. P. Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping. Small Methods 2019, 3, 1900356.
[8]
Liu, Y. T.; Li, D.; Yu, J. Y.; Ding, B. Stable confinement of black phosphorus quantum dots on black tin oxide nanotubes: A robust, double-active electrocatalyst toward efficient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 16439-16444.
[9]
Lü, F.; Zhao, S. Z.; Guo, R. J.; He, J.; Peng, X. Y.; Bao, H. H.; Fu, J. T.; Han, L. L.; Qi, G. C.; Luo, J. et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019, 61, 420-427.
[10]
Li, L. Q.; Tang, C.; Xia, B. Q.; Jin, H. Y.; Zheng, Y.; Qiao, S. Z. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 2019, 9, 2902-2908.
[11]
Wang, Y.; Chen, A. R.; Lai, S. H.; Peng, X. Y.; Zhao, S. Z.; Hu, G. Z.; Qiu, Y.; Ren, J. Q.; Liu, X. J.; Luo, J. Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions. J. Catal. 2020, 381, 78-83.
[12]
Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, S.; Zhang, T. R. Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 2019, 11, 9739-9750.
[13]
Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, 1902709.
[14]
Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.
[15]
Cheng, H.; Cui, P. X.; Wang, F. R.; Ding, L. X.; Wang, H. H. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angew. Chem., Int. Ed. 2019, 58, 15541-15547.
[16]
Hu, L.; Xing, Z.; Feng, X. F. Understanding the electrocatalytic interface for ambient ammonia synthesis. ACS Energy Lett. 2020, 5, 430-436.
[17]
Zhang, R.; Ren, X.; Shi, X. F.; Xie, F. Y.; Zheng, B. Z.; Guo, X. D.; Sun, X. P. Enabling effective electrocatalytic N2 conversion to NH3 by the TiO2 nanosheets array under ambient conditions. ACS Appl. Mater. Interfaces 2018, 10, 28251-28255.
[18]
Xue, X. L.; Chen, R. P.; Chen, H. W.; Hu, Y.; Ding, Q. Q.; Liu, Z. T.; Ma, L. B.; Zhu, G. Y.; Zhang, W. J.; Yu, Q. et al. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets. Nano Lett. 2018, 18, 7372-7377.
[19]
Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229-1249.
[20]
Li, H.; Li, J.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Oxygen vacancy- mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives. Angew. Chem., Int. Ed. 2018, 57, 122-138.
[21]
Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.
[22]
Zhu, X. J.; Mou, S. Y.; Peng, Q. L.; Liu, Q.; Luo, Y. L.; Chen, G.; Gao, S. Y.; Sun, X. P. Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: Recent advances in catalyst development and performance improvement. J. Mater. Chem. A 2020, 6, 1545-1556.
[23]
Kong, W. H.; Zhang, R.; Zhang, X. X.; Ji, L. S.; Yu, G. S.; Wang, T.; Luo, Y. L.; Shi, X. F.; Xu, Y. H.; Sun, X. P. WO3 nanosheets rich in oxygen vacancies for enhanced electrocatalytic N2 reduction to NH3. Nanoscale 2019, 11, 19274-19277.
[24]
Song, J. J.; Huang, Z. F.; Pan, L.; Zou, J. J.; Zhang, X. W.; Wang, L. Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst. ACS Catal. 2015, 5, 6594-6599.
[25]
Liu, X. F.; Fechler, N.; Antonietti, M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev. 2013, 42, 8237-8265.
[26]
Hu, Z. M.; Xiao, X.; Jin, H. Y.; Li, T. Q.; Chen, M.; Liang, Z.; Guo, Z. F.; Li, J.; Wan, J.; Huang, L. et al. Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat. Commun. 2017, 8, 15630.
[27]
Balaji, S.; Djaoued, Y.; Albert, A. S.; Ferguson, R. Z.; Brüning, R. Hexagonal tungsten oxide based electrochromic devices: Spectroscopic evidence for the li ion occupancy of four-coordinated square windows. Chem. Mater. 2009, 21, 1381-1389.
[28]
Kalantar-zadeh, K.; Vijayaraghavan, A.; Ham, M. H.; Zheng, H. D.; Breedon, M.; Strano, M. S. Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide. Chem. Mater. 2010, 22, 5660-5666.
[29]
Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434-9443.
[30]
Sun, Z. Y.; Huo, R. P.; Choi, C.; Hong, S.; Wu, T. S.; Qiu, J. S.; Yan, C.; Han, Z. S.; Liu, Y. C.; Soo, Y. L. et al. Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure. Nano Energy 2019, 62, 869-875.
[31]
Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296-336.
[32]
Cao, N.; Chen, Z.; Zang, K. T.; Xu, J.; Zhong, J.; Luo, J.; Xu, X.; Zheng, G. F. Doping strain induced Bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat. Commun. 2019, 10, 2877.
[33]
Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504-508.
[34]
Yu, B.; Li, H.; White, J.; Donne, S.; Yi, J. B.; Xi, S. B.; Fu, Y.; Henkelman, G.; Yu, H.; Chen, Z. L. et al. Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion. Adv. Funct. Mater. 2020, 30, 1905665.
[35]
Hou, T. T.; Guo, R. H.; Chen, L. L.; Xie, Y. C. Z.; Guo, J. S.; Zhang, W. H.; Zheng, X. S.; Zhu, W. K.; Tan, X. P.; Wang, L. B. Atomic-level insights in tuning defective structures for nitrogen photofixation over amorphous SmOCl nanosheets. Nano Energy 2019, 65, 104003.
[36]
Li, P. X.; Fu, W. Z.; Zhuang, P. Y.; Cao, Y. D.; Tang, C.; Watson, A. B.; Dong, P.; Shen, J. F.; Ye, M. X. Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation. Small 2019, 15, 1902535.
[37]
Wang, Y. L.; Craven, M.; Yu, X. T.; Ding, J.; Bryant, P.; Huang, J.; Tu, X. Plasma-enhanced catalytic synthesis of ammonia over a Ni/Al2O3 catalyst at near-room temperature: Insights into the importance of the catalyst surface on the reaction mechanism. ACS Catal. 2019, 12, 10780-10793.
[38]
Li, W. Y.; Zhang, C.; Han, M. M.; Ye, Y. X.; Zhang, S. B.; Liu, Y. Y.; Wang, G. Z.; Liang, C. H.; Zhang, H. M. Ambient electrosynthesis of ammonia using core-shell structured Au@C catalyst fabricated by one-step laser ablation technique. ACS Appl. Mater. Interfaces 2019, 11, 44186-44195.
[39]
Chen, P. Z.; Zhang, N.; Wang, S. B.; Zhou, T. P.; Tong, Y.; Ao, C. C.; Yan, W. S.; Zhang, L. D.; Chu, W. S.; Wu, C. Z. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 6635-6640.
[40]
Zhang, Y.; Shao, Q.; Long, S.; Huang, X. Q. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting. Nano Energy 2018, 45, 448-455.
[41]
Zheng, T. T.; Sang, W.; He, Z. H.; Wei, Q. S.; Chen, B. W.; Li, H. L.; Cao, C.; Huang, R. J.; Yan, X. P.; Pan, B. C. et al. Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution. Nano Lett. 2017, 17, 7968-7973.
[42]
Lin, Y. X.; Zhang, S. N.; Xue, Z. H.; Zhang, J. J.; Su, H.; Zhao, T. J.; Zhai, G. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. Nat. Commun. 2019, 10, 4380.