AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Advanced Ni-Nx-C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping

Yiqun Chen1Yuejian Yao1Yujian Xia2Kun Mao1Gongao Tang1Qiang Wu1( )Lijun Yang1( )Xizhang Wang1Xuhui Sun2Zheng Hu1( )
Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Material (FUNSOM), Soochow University, Suzhou 215123, China
Show Author Information

Graphical Abstract

Abstract

Metal-nitrogen-carbon materials are promising catalysts for CO2 electroreduction to CO. Herein, by taking the unique hierarchical carbon nanocages as the support, an advanced nickel-nitrogen-carbon single-site catalyst is conveniently prepared by pyrolyzing the mixture of NiCl2 and phenanthroline, which exhibits a Faradaic efficiency plateau of > 87% in a wide potential window of -0.6 - -1.0 V. Further S-doping by adding KSCN into the precursor much enhances the CO specific current density by 68%, up to 37.5 A·g-1 at -0.8 V, along with an improved CO Faradaic efficiency plateau of > 90%. Such an enhancement can be ascribed to the facilitated CO pathway and suppressed hydrogen evolution from thermodynamic viewpoint as well as the increased electroactive surface area and improved charge transfer fromkinetic viewpoint due to the S-doping. This study demonstrates a simple and effective approach to advanced electrocatalysts by synergetic modification of the porous carbon-based support and electronic structure of the active sites.

Electronic Supplementary Material

Download File(s)
12274_2020_2928_MOESM1_ESM.pdf (5.5 MB)

References

[1]
Vitousek, P. M.; Mooney, H. A.; Lubchenco, J.; Melillo, J. M. Human domination of earth’s ecosystems. Science 1997, 277, 494-499.
[2]
Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 Hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936-12973.
[3]
Lee, J. H.; Kattel, S.; Jiang, Z.; Xie, Z. H.; Yao, S. Y.; Tackett, B. M.; Xu, W. Q.; Marinkovic, N. S.; Chen, J. G. Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts. Nat. Commun. 2019, 10, 3724.
[4]
Turner, J. A. A realizable renewable energy future. Science 1999, 285, 687-689.
[5]
Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16-22.
[6]
Li, F. W.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z. Y.; Li, Y. L.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y. H. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577, 509-513.
[7]
Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423-3452.
[8]
Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809-1831.
[9]
Li, F. W.; MacFarlane, D. R.; Zhang, J. Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 2018, 10, 6235-6260.
[10]
Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Cuenya, B. R.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.
[11]
Li, C. H.; Tong, X.; Yu, P.; Du, W.; Wu, J.; Rao, H.; Wang, Z. M. Carbon dioxide photo/electroreduction with cobalt. J. Mater. Chem. A 2019, 7, 16622-16642.
[12]
Varela, A. S.; Sahraie, N. R.; Steinberg, J.; Ju, W.; Oh, H. S.; Strasser, P. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem., Int. Ed. 2015, 54, 10758-10762.
[13]
Hu, X. M.; Hval, H. H.; Bjerglund, E. T.; Dalgaard, K. J.; Madsen, M. R.; Pohl, M. M.; Welter, E.; Lamagni, P.; Buhl, K. B.; Bremholm, M. et al. Selective CO2 reduction to CO in water using earth- abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal. 2018, 8, 6255-6264.
[14]
Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphenenanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893-903.
[15]
Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140-147.
[16]
Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li, Y. D. Ionic exchange of metal- organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078-8081.
[17]
Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889-14892.
[18]
Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F. et al. Coordinatively unsaturated nickel- nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 2018, 11, 1204-1210.
[19]
Pan, F. P.; Li, B. Y.; Sarnello, E.; Hwang, S.; Gang, Y.; Feng, X. H.; Xiang, X. M.; Adli, N. M.; Li, T.; Su, D. et al. Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering. Nano Energy 2020, 68, 104384.
[20]
Wang, Y. C.; Lai, Y. J.; Song, L.; Zhou, Z. Y.; Liu, J. G.; Wang, Q.; Yang, X. D.; Chen, C.; Shi, W.; Zheng, Y. P. et al. S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. Angew. Chem., Int. Ed. 2015, 54, 9907-9910.
[21]
Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 2017, 50, 435-444.
[22]
Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater., in press, .
[23]
Sun, T.; Wu, Q.; Zhuo, O.; Jiang, Y. F.; Bu, Y. F.; Yang, L. J.; Wang, X. Z.; Hu, Z. Manganese oxide-induced strategy to high-performance iron/nitrogen/carbon electrocatalysts with highly exposed active sites. Nanoscale 2016, 8, 8480-8485.
[24]
Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508-517.
[25]
Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756-7764.
[26]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[27]
Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbonfuels. Energy Environ. Sci. 2010, 3, 1311-1315.
[28]
Yang, H. Z.; Shang, L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.
[29]
Chen, H.; Yang, Y.; Hu, Z.; Huo, K. F.; Ma, Y. W.; Chen, Y.; Wang, X. S.; Lu, Y. N. Synergism of C5N six-membered ring and vapor- liquid-solid growth of CNx nanotubes with pyridine precursor. J. Phys. Chem. B 2006, 110, 16422-16427.
[30]
Lu, J. Z.; Yang, L. J.; Xu, B. L.; Wu, Q.; Zhang, D.; Yuan, S. J.; Zhai, Y.; Wang, X. Z.; Fan, Y. N.; Hu, Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron fischer-tropsch catalysts for lower olefins. ACS Catal. 2014, 4, 613-621.
[31]
Kim, S. J.; Park, Y. J.; Ra, E. J.; Kim, K. K.; An, K. H.; Lee, Y. H.; Choi, J. Y.; Park, C. H.; Doo, S. K.; Park, M. H. et al. Defect- induced loading of Ptnanoparticles on carbon nanotubes. Appl. Phys. Lett. 2007, 90, 023114.
[32]
Pieta, I. S.; Rathi, A.; Pieta, P.; Nowakowski, R.; Hołdynski, M.; Pisarek, M.; Kaminska, A.; Gawande, M. B.; Zboril, R. Electrocatalytic methanol oxidation over Cu, Ni and bimetallic Cu-Ni nanoparticles supported on graphitic carbon nitride. Appl. Catal. B: Environ. 2019, 244, 272-283.
[33]
Zhang, J.; An, Z.; Zhu, Y. R.; Shu, X.; Song, H. Y.; Jiang, Y. T.; Wang, W. L.; Xiang, X.; Xu, L. L.; He, J. Ni0/Niδ+ synergistic catalysis on a nanosized Ni surface for simultaneous formation of C-C and C-N bonds. ACS Catal. 2019, 9, 11438-11446.
[34]
Fan, L. L.; Liu, P. F.; Yan, X. C.; Gu, L.; Yang, Z. Z.; Yang, H. G.; Qiu, S. L.; Yao, X. D. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 2016, 7, 10667.
[35]
Chen, Z. P.; Mou, K. W.; Wang, X. H.; Liu, L. C. Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew. Chem., Int. Ed. 2018, 130, 12972-12976.
[36]
Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648-658.
[37]
Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610-614.
[38]
Shen, H. J.; Gracia-Espino, E.; Ma, J. Y.; Zang, K. T.; Luo, J.; Wang, L.; Gao, S. S.; Mamat, X.; Hu, G. Z.; Wagberg, T. et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media. Angew. Chem., Int. Ed. 2017, 56, 13800-13804.
[39]
Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.
[40]
Zhang, C. H.; Yang, S. Z.; Wu, J. J.; Liu, M. J.; Yazdi, S.; Ren, M. Q.; Sha, J. W.; Zhong, J.; Nie, K. Q.; Jalilov, A. S. et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 2018, 8, 1703487.
[41]
Lei, F. C.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Liu, K. T.; Liang, L.; Yao, T.; Pan, B. C.; Wei, S. Q.; Xie, Y. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 2016, 7, 12697.
[42]
Li, X. Y.; Shen, J.; Wu, C.; Wu, K. B. Ball-mill-exfoliated graphene: Tunable electrochemistry and phenol sensing. Small 2019, 15, 1805567.
[43]
Zhu, J. Y.; Childress, A. S.; Karakaya, M.; Dandeliya, S.; Srivastava, A.; Lin, Y.; Rao, A. M.; Podila, R. Defect-engineered graphene for high-energy- and high-power-density supercapacitor devices. Adv. Mater. 2016, 28, 7185-7192.
Nano Research
Pages 2777-2783
Cite this article:
Chen Y, Yao Y, Xia Y, et al. Advanced Ni-Nx-C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. Nano Research, 2020, 13(10): 2777-2783. https://doi.org/10.1007/s12274-020-2928-0
Topics:

764

Views

50

Crossref

N/A

Web of Science

46

Scopus

10

CSCD

Altmetrics

Received: 29 April 2020
Revised: 09 June 2020
Accepted: 11 June 2020
Published: 05 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return