Journal Home > Volume 13 , Issue 10

Potassium-ion batteries (PIBs) hold great promise as alternatives to lithium ion batteries in post-lithium age, while face challenges of slow reaction kinetics induced by the inherent characteristics of large-size K+. We herein show that creating sufficient exposed edges in MoS2 via constructing ordered mesoporous architecture greatly favors for improved kinetics as well as increased reactive sites for K storage. The engineered MoS2 with edge-enriched planes (EE-MoS2) is featured by three-dimensional bicontinuous frameworks with ordered mesopores of ~ 5.0 nm surrounded by thin wall of ~ 9.0 nm. Importantly, EE-MoS2 permits exposure of enormous edge planes at pore walls, renders its intrinsic layer spacing more accessible for K+ and accelerates conversion kinetics, thus realizing enhanced capacity and high rate capability. Impressively, EE-MoS2 displays a high reversible charge capacity of 506 mAh·g-1 at 0.05 A·g-1, superior cycling capacities of 321 mAh·g-1 at 1.0 A·g-1 after 200 cycles and a capacity of 250 mAh·g-1 at 2.0 A·g-1, outperforming edge-deficient MoS2 with nonporous bulk structure. This work enlightens the nanoarchitecture design with abundant edges for improving electrochemical properties and provides a paradigm for exploring high-performance PIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Edge-enriched MoS2 for kinetics-enhanced potassium storage

Show Author's information Guangshen Jiang1Xiaosa Xu1Haojie Han1Changzhen Qu1Hlib Repich1Fei Xu1,2( )Hongqiang Wang1( )
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene (NPU), Northwestern Polytechnical University, Xi’an 710072, China
Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany

Abstract

Potassium-ion batteries (PIBs) hold great promise as alternatives to lithium ion batteries in post-lithium age, while face challenges of slow reaction kinetics induced by the inherent characteristics of large-size K+. We herein show that creating sufficient exposed edges in MoS2 via constructing ordered mesoporous architecture greatly favors for improved kinetics as well as increased reactive sites for K storage. The engineered MoS2 with edge-enriched planes (EE-MoS2) is featured by three-dimensional bicontinuous frameworks with ordered mesopores of ~ 5.0 nm surrounded by thin wall of ~ 9.0 nm. Importantly, EE-MoS2 permits exposure of enormous edge planes at pore walls, renders its intrinsic layer spacing more accessible for K+ and accelerates conversion kinetics, thus realizing enhanced capacity and high rate capability. Impressively, EE-MoS2 displays a high reversible charge capacity of 506 mAh·g-1 at 0.05 A·g-1, superior cycling capacities of 321 mAh·g-1 at 1.0 A·g-1 after 200 cycles and a capacity of 250 mAh·g-1 at 2.0 A·g-1, outperforming edge-deficient MoS2 with nonporous bulk structure. This work enlightens the nanoarchitecture design with abundant edges for improving electrochemical properties and provides a paradigm for exploring high-performance PIBs.

Keywords: molybdenum disulfide, kinetics, enriched edges, potassium-ion batteries

References(44)

[1]
Wu, X.; Chen, Y. L.; Xing, Z.; Lam, C. W. K.; Pang, S. S.; Zhang, W.; Ju, Z. C. Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.
[2]
Wu, Y.; Huang, H. B.; Feng, Y. Z.; Wu, Z. S.; Yu, Y. The promise and challenge of phosphorus-based composites as anode materials for potassium-ion batteries. Adv. Mater. 2019, 31, 1901414.
[3]
Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 4687-4691.
[4]
Yang, W. X.; Zhou, J. H.; Wang, S.; Zhang, W. Y.; Wang, Z. C.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. J. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 2019, 12, 1605-1612.
[5]
Qin, L.; Lei, Y.; Wang, H. W.; Dong, J. H.; Wu, Y. Y.; Zhai, D. Y; Kang, F. Y.; Tao, Y.; Yang, Q. H. Capillary encapsulation of metallic potassium in aligned carbon nanotubes for use as stable potassium metal anodes. Adv. Energy Mater. 2019, 9, 1901427.
[6]
Hu, X.; Liu, Y. J.; Chen, J. X.; Yi, L. C.; Zhan, H. B.; Wen, Z. H. Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 2019, 9, 1901533.
[7]
Zhang, W. C.; Mao, J. F.; Li, S. A.; Chen, Z. X.; Guo, Z. P. Phosphorus- based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316-3319.
[8]
Zhao, S. Q.; Yan, K.; Munroe, P.; Sun, B.; Wang, G. X. Construction of hierarchical K1.39Mn3O6 spheres via AlF3 coating for high- performance potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1803757.
[9]
Zeng, C.; Xie, F. X.; Yang, X. F.; Jaroniec, M.; Zhang, L.; Qiao, S. Z. Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage. Angew. Chem., Int. Ed. 2018, 57, 8540-8544.
[10]
Xu, F.; Zhai, Y. X.; Zhang, E.; Liu, Q. H.; Jiang, G. S.; Xu, X. S.; Qiu, Y. Q.; Liu, X. M.; Wang H. Q.; Kaskel, S. Ultrastable surface- dominated pseudocapacitive potassium storage enabled by edge- enriched N-doped porous carbon nanosheets. Angew. Chem., Int. Ed., in press, .
[11]
Wang, N. N.; Chu, C. X.; Xu, X.; Du, Y.; Yang, J.; Bai, Z. C.; Dou, S. X. Comprehensive new insights and perspectives into Ti-based anodes for next-generation alkaline metal (Na+, K+) ion batteries. Adv. Energy Mater. 2018, 8, 1801888.
[12]
Zhao, Y.; Zhu, J. J.; Ong, S. J. H.; Yao, Q. Q.; Shi, X. L.; Hou, K.; Xu, Z. J.; Guan, L. H. High-rate and ultralong cycle-life potassium ion batteries enabled by in situ engineering of yolk-shell FeS2@C structure on graphene matrix. Adv. Energy Mater. 2018, 8, 1802565.
[13]
Zhou, J. W.; Liu, Y.; Zhang, S. L.; Zhou, T. F.; Guo, Z. P. Metal chalcogenides for potassium storage. InfoMat 2020, 2, 437-465.
[14]
Chen, B.; Chao, D. L.; Liu, E. Z.; Jaroniec, M.; Zhao, N. Q.; Qiao, S. Z. Transition metal dichalcogenides for alkali metal ion batteries: Engineering strategies at the atomic level. Energy Environ. Sci. 2020, 13, 1096-1131.
[15]
Yang, F. H.; Gao, H.; Hao, J. N.; Zhang, S. L.; Li, P.; Liu, Y. Q.; Chen, J.; Guo, Z. P. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808291.
[16]
Liu, Q. N.; Hu, Z.; Liang, Y. R.; Li, L.; Zou, C.; Jin, H. L.; Wang, S.; Lu, H. M.; Gu, Q. F.; Chou, S. L. et al. Facile synthesis of hierarchical hollow CoP@C composites with superior performance for sodium and potassium storage. Angew. Chem., Int. Ed. 2020, 59, 5159-5164.
[17]
Yi, Y. Y.; Sun, Z. T.; Li, C.; Tian, Z. N.; Lu, C.; Shao, Y. L.; Li, J.; Sun, J. Y.; Liu, Z. F. Designing 3D biomorphic nitrogen-doped MoSe2/ graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 2020, 30, 1903878.
[18]
Jia, B. R.; Yu, Q. Y.; Zhao, Y. Z.; Qin, M. L.; Wang, W.; Liu, Z. W.; Lao, C. Y.; Liu, Y.; Wu, H. W.; Zhang, Z. L. et al. Bamboo-like hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage. Adv. Funct. Mater. 2018, 28, 1803409.
[19]
Yang, T. Y.; Liang, J.; Sultana, I.; Rahman, M. M.; Monteiro, M. J.; Chen, Y.; Shao, Z. P.; Silva, S. R. P.; Liu, J. Formation of hollow MoS2/ carbon microspheres for high capacity and high rate reversible alkali-ion storage. J. Mater. Chem. A 2018, 6, 8280-8288.
[20]
Cui, Y. P.; Liu, W.; Feng, W. T.; Zhang, Y.; Du, Y. X.; Liu, S.; Wang, H. L.; Chen, M.; Zhou, J. Controlled design of well-dispersed ultrathin MoS2 nanosheets inside hollow carbon skeleton: Toward fast potassium storage by constructing spacious “houses” for K ions. Adv. Funct. Mater. 2020, 30, 1908755.
[21]
Zheng, N.; Jiang, G. Y.; Chen, X.; Mao, J. Y.; Zhou, Y. J.; Li, Y. S. Rational design of a tubular, interlayer expanded MoS2-N/O doped carbon composite for excellent potassium-ion storage. J. Mater. Chem. A 2019, 7, 9305-9315.
[22]
Song, Q.; Yan, H. B.; Liu, K. D.; Xie, K. Y.; Li, W.; Gai, W. H.; Chen, G. H.; Li, H. J.; Shen, C.; Fu, Q. G. et al. Vertically grown edge-rich graphene nanosheets for spatial control of Li nucleation. Adv. Energy Mater. 2018, 8, 1800564.
[23]
Zhang, Q. F.; Wang, L. L.; Wang, J.; Xing, C. Y.; Ge, J. M.; Fan, L.; Liu, Z. M.; Lu, X. L.; Wu, M. G.; Yu, X. Z. et al. Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries. Energy Storage Mater. 2018, 15, 361-367.
[24]
Zhang, Z. Y.; Wu, S. L.; Cheng, J. Y.; Zhang, W. J. MoS2 nanobelts with (002) plane edges-enriched flat surfaces for high-rate sodium and lithium storage. Energy Storage Mater. 2018, 15, 65-74.
[25]
Zheng, N.; Jiang, G. Y.; Chen, X.; Mao, J. Y.; Jiang, N.; Li, Y. S. Battery separators functionalized with edge-rich MoS2/C hollow microspheres for the uniform deposition of Li2S in high-performance lithium-sulfur batteries. Nano-Micro Lett. 2019, 11, 43-57.
[26]
Shaju, K. M.; Jiao, F.; Débart, A.; Bruce, P. G. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 2007, 9, 1837-1842.
[27]
Dong, Y. L.; Xu, Y.; Li, W.; Fu, Q.; Wu, M. H.; Manske, E.; Kröger, J.; Lei, Y. Insights into the crystallinity of layer-structured transition metal dichalcogenides on potassium ion battery performance: A case study of molybdenum disulfide. Small 2019, 15, 1900497.
[28]
Teng, Y. Q.; Zhao, H. L.; Zhang, Z. J.; Li, Z. L.; Xia, Q.; Zhang, Y.; Zhao, L. N.; Du, X. F.; Du, Z. H.; Lv, P. P. et al. MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 2016, 10, 8526-8535.
[29]
Zhang, Z. J.; Zhao, H. L.; Teng, Y. Q.; Chang, X. W.; Xia, Q.; Li, Z. L.; Fang, J. J.; Du, Z. H.; Świerczek, K. Carbon-sheathed MoS2 nanothorns epitaxially grown on CNTs: Electrochemical application for highly stable and ultrafast lithium storage. Adv. Energy Mater. 2018, 8, 1700174.
[30]
Jiang, G. S.; Xu, F.; Yang, S. H.; Wu, J. P.; Wei, B. Q.; Wang, H. Q. Mesoporous, conductive molybdenum nitride as efficient sulfur hosts for high-performance lithium-sulfur batteries. J. Power Sources 2018, 395, 77-84.
[31]
Chong, S. K.; Sun, L.; Shu, C. Y.; Guo, S. W.; Liu, Y. N.; Wang, W.; Liu, H. K. Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano Energy 2019, 63, 103868.
[32]
Zhang, J. Y.; Cui, P. X.; Gu, Y.; Wu, D. J.; Tao, S.; Qian, B.; Chu, W. S.; Song, L. Encapsulating carbon-coated MoS2 nanosheets within a nitrogen-doped graphene network for high-performance potassium- ion storage. Adv. Mater. Interfaces 2019, 6, 1901066.
[33]
Ge, J. M.; Fan, L.; Wang, J.; Zhang, Q. F.; Liu, Z. M.; Zhang, E. J.; Liu, Q.; Yu, X. Z.; Lu, B. A. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.
[34]
Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J. R.; Zhou, J. H.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. J. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812.
[35]
Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.
[36]
Yang, L.; Hong, W. W.; Zhang, Y.; Tian, Y.; Gao, X.; Zhu, Y. R.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Hierarchical NiS2 modified with bifunctional carbon for enhanced potassium-ion storage. Adv. Funct. Mater. 2019, 29, 1903454.
[37]
Xu, F.; Qiu, Y. Q.; Han, H. J.; Jiang, G. S.; Zhao, R. X.; Zhang, E.; Li, H. J.; Wang, H. Q.; Kaskel, S. Manipulation of carbon framework from the microporous to nonporous via a mechanical-assisted treatment for structure-oriented energy storage. Carbon 2020, 159, 140-148.
[38]
Jiang, G. S.; Han, H. J.; Zhuang, W. Q.; Xu, X. S.; Kaskel, S.; Xu, F.; Wang, H. Q. Three-dimensional ordered mesoporous cobalt nitride for fast-kinetics and stable-cycling lithium storage. J. Mater. Chem. A 2019, 7, 17561-17569.
[39]
Jiang, G. S.; Qiu, Y. Q.; Lu, Q. Q.; Zhuang, W. Q.; Xu, X. S.; Kaskel, S.; Xu, F.; Wang, H. Q. Mesoporous thin-wall molybdenum nitride for fast and stable Na/Li storage. ACS Appl. Mater. Interfaces 2019, 11, 41188-41195.
[40]
Xu, F.; Ding, B. C.; Qiu, Y. Q.; Dong, R. H.; Zhuang, W. Q.; Xu, X. S.; Han, H. J.; Yang, J. Y.; Wei, B. Q.; Wang, H. Q. et al. Generalized domino-driven synthesis of hollow hybrid carbon spheres with ultrafine metal nitrides/oxides. Matter, in press, .
[41]
Xu, X. S.; Xu, Y. X.; Xu, F.; Jiang, G. S.; Jian, J.; Yu, H. W.; Zhang, E. M.; Shchukin, D.; Kaskel, S.; Wang, H. Q. Black BiVO4: Size tailored synthesis, rich oxygen vacancies, and sodium storage performance. J. Mater. Chem. A 2020, 8, 1636-1645.
[42]
Xu, F.; Han, H. J.; Qiu Y. Q.; Zhang E.; Repich, H.; Qu C. Z.; Yu, H. W.; Wang, H. Q.; Kaskel, S. Facile regulation of carbon framework from the microporous to low-porous via molecular crosslinker design and enhanced Na storage, Carbon, in press, .
[43]
Wu, J. X.; Lu, Z. H.; Li, K. K.; Cui, J.; Yao, S. S.; Haq, M. I. U.; Li, B. H.; Yang, Q. H.; Kang, F. Y.; Ciucci, F. et al. Hierarchical MoS2/ carbon microspheres as long-life and high-rate anodes for sodium-ion batteries. J. Mater. Chem. A 2018, 6, 5668-5677.
[44]
Teng, Y. Q.; Zhao, H. L.; Zhang, Z. J.; Zhao, L. N.; Zhang, Y.; Li, Z. L.; Xia, Q.; Du, Z. H.; Świerczek, K. MoS2 nanosheets vertically grown on reduced graphene oxide via oxygen bonds with carbon coating as ultrafast sodium ion batteries anodes. Carbon 2017, 119, 91-100.
File
12274_2020_2925_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 03 May 2020
Revised: 07 June 2020
Accepted: 08 June 2020
Published: 05 October 2020
Issue date: October 2020

Copyright

© The Author(s) 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51972270, 51702262, 51872240, 51911530212, and 51672225), the Natural Science Foundation of Shaanxi Province (No. 2020JZ-07), the Key Research and Development Program of Shaanxi Province (No. 2019TSLGY07-03), the Fundamental Research Funds for the Central Universities (Nos. 3102019JC005 and 3102019ghxm004), the Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (2019-QZ-03), and the Top International University Visiting Program for Outstanding Young Scholars of Northwestern Polytechnical University. We would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for XPS characterizations. G. J. acknowledges the sponsorship from China Scholarship Council (CSC). H. W. acknowledges the support from the 1000 Youth Talent Program of China. F. X. acknowledges support by the Alexander von Humboldt Foundation.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return