Journal Home > Volume 13 , Issue 10

Oligo(p-phenyleneethynylene)s (OPEs) end-capped with (alkynyl)bis(diphosphine)ruthenium and thiol/thiolate groups stabilize ca. 2 nm diameter gold nanoparticles (AuNPs). The morphology, elemental composition and stability of the resultant organometallic OPE/AuNP hybrid materials have been defined using a combination of molecular- and nano-material chacterization techniques. The hybrids display long-term stability in solution (more than a month), good solubility in organic solvents, reversible ruthenium- centered oxidation, and transparency beyond 800 nm, and possess very strong nonlinear absorption activity at the first biological window, and unprecedented two-photon absorption activity in the second biological window (σ2 up to 38,000 GM at 1,050 nm).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hybrids of gold nanoparticles and oligo(p-phenyleneethynylene)s end-functionalized with alkynylruthenium groups: Outstanding two-photon absorption in the second biological window

Show Author's information Cristóbal Quintana1Mahbod Morshedi1Jun Du1Joseph P.L. Morrall1Jan K. Zaręba2Marek Samoc2Marie P. Cifuentes1Mark G. Humphrey1( )
Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland

Abstract

Oligo(p-phenyleneethynylene)s (OPEs) end-capped with (alkynyl)bis(diphosphine)ruthenium and thiol/thiolate groups stabilize ca. 2 nm diameter gold nanoparticles (AuNPs). The morphology, elemental composition and stability of the resultant organometallic OPE/AuNP hybrid materials have been defined using a combination of molecular- and nano-material chacterization techniques. The hybrids display long-term stability in solution (more than a month), good solubility in organic solvents, reversible ruthenium- centered oxidation, and transparency beyond 800 nm, and possess very strong nonlinear absorption activity at the first biological window, and unprecedented two-photon absorption activity in the second biological window (σ2 up to 38,000 GM at 1,050 nm).

Keywords: gold nanoparticles, nonlinear optics, inorganic materials, metal alkynyl complexes, organometallics

References(41)

[1]
Tutt, L. W.; Boggess, T. F. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Progr. Quant. Electron. 1993, 17, 299-338.
[2]
Kim, H. M.; Cho, B. R. Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 2015, 115, 5014-5055.
[3]
Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016, 116, 2826-2885.
[4]
Dini, D.; Calvete, M. J. F.; Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 13043-13233.
[5]
Smith, A. M.; Mancini, M. C.; Nie, S. M. Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710-711.
[6]
He, G. S.; Tan, L. S.; Zheng, Q. D.; Prasad, P. N. Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem. Rev. 2008, 108, 1245-1330.
[7]
Samoc, M.; Dalton, G. T.; Gladysz, J. A.; Zheng, Q. L.; Velkov, Y.; Ågren, H.; Norman, P.; Humphrey, M. G. Cubic nonlinear optical properties of platinum-terminated polyynediyl chains. Inorg. Chem. 2008, 47, 9946-9957.
[8]
Roberts, R. L.; Schwich, T.; Corkery, T. C.; Cifuentes, M. P.; Green, K. A.; Farmer, J. D.; Low, P. J.; Marder, T. B.; Samoc, M.; Humphrey, M. G. Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers. Adv. Mater. 2009, 21, 2318-2322.
[9]
Zhou, G. J.; Wong, W. Y. Organometallic acetylides of PtII, AuI and HgII as new generation optical power limiting materials. Chem. Soc. Rev. 2011, 40, 2541-2566.
[10]
Kamat, P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 2002, 106, 7729-7744.
[11]
Quintana, C.; Morshedi, M.; Wang, H.; Du, J.; Cifuentes, M. P.; Humphrey, M. G. Exceptional two-photon absorption in alkynylruthenium-gold nanoparticle hybrids. Nano Lett. 2019, 19, 756-760.
[12]
Ramakrishna, G.; Varnavski, O.; Kim, J.; Lee, D.; Goodson, T. Quantum-sized gold clusters as efficient two-photon absorbers. J. Am. Chem. Soc. 2008, 130, 5032-5033.
[13]
Olesiak-Banska, J.; Waszkielewicz, M.; Matczyszyn, K.; Samoc, M. A closer look at two-photon absorption, absorption saturation and nonlinear refraction in gold nanoclusters. RSC Adv. 2016, 6, 98748-98752.
[14]
Olesiak-Banska, J.; Waszkielewicz, M.; Obstarczyk, P.; Samoc, M. Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters. Chem. Soc. Rev. 2019, 48, 4087-4117.
[15]
Simpson, P. V.; Watson, L. A.; Barlow, A.; Wang, G. M.; Cifuentes, M. P.; Humphrey, M. G. Record multiphoton absorption cross-sections by dendrimer organometalation. Angew. Chem., Int. Ed. 2016, 55, 2387-2391.
[16]
Schwich, T.; Barlow, A.; Cifuentes, M. P.; Szeremeta, J.; Samoc, M.; Humphrey, M. G. Stellar multi-photon absorption materials: Beyond the telecommunication wavelength band. Chem. Eur. J. 2017, 23, 8395-8399.
[17]
Stapleton, J. J.; Harder, P.; Daniel, T. A.; Reinard, M. D.; Yao, Y. X.; Price, D. W.; Tour, J. M.; Allara, D. L. Self-assembled oligo(phenylene- ethynylene) molecular electronic switch monolayers on gold: Structures and chemical stability. Langmuir 2003, 19, 8245-8255.
[18]
Al-Owaedi, O. A.; Milan, D. C.; Oerthel, M. C.; Bock, S.; Yufit, D. S.; Howard, J. A. K.; Higgins, S. J.; Nichols, R. J.; Lambert, C. J.; Bryce, M. R. et al. Experimental and computational studies of the single- molecule conductance of Ru(II) and Pt(II) trans-bis(acetylide) complexes. Organometallics 2016, 35, 2944-2954.
[19]
Ng, Z.; Loh, K. P.; Li, L. Q.; Ho, P.; Bai, P.; Yip, J. H. K. Synthesis and electrical characterization of oligo(phenylene ethynylene) molecular wires coordinated to transition metal complexes. ACS Nano 2009, 3, 2103-2114.
[20]
Quintana, C.; Cifuentes, M. P.; Humphrey, M. G. Transition metal complex/gold nanoparticle hybrid materials. Chem. Soc. Rev. 2020, 49, 2316-2341.
[21]
Hurst, S. K.; Cifuentes, M. P.; Morrall, J. P. L.; Lucas, N. T.; Whittall, I. R.; Humphrey, M. G.; Asselberghs, I.; Persoons, A.; Samoc, M.; Luther-Davies, B. et al. Organometallic complexes for nonlinear optics. 22. Quadratic and cubic hyperpolarizabilities of trans- bis(bidentate phosphine)ruthenium σ-arylvinylidene and σ-arylalkynyl complexes. Organometallics 2001, 20, 4664-4675.
[22]
Touchard, D.; Morice, C.; Cadierno, V.; Haquette, P.; Toupet, L.; Dixneuf, P. H. Novel allenylidene alkynyl and ammonia alkynyl metal complexes via selective synthesis of mono and bis alkynyl ruthenium(II) complexes; crystal structure of trans-[Ru(NH3)((C-CPh)) (Ph2PCH2CH2PPh2)2]PF6. J. Chem. Soc., Chem. Commun. 1994, 859-860.
[23]
Touchard, D.; Haquette, P.; Guesmi, S.; Le Pichon, L.; Daridor, A.; Toupet, L.; Dixneuf, P. H. Vinylidene-, alkynyl-, and trans- bis(alkynyl)ruthenium complexes. Crystal structure of trans- [Ru(NH3)(C⋮C-Ph)(Ph2PCH2CH2PPh2)2]PF6. Organometallics 1997, 16, 3640-3648.
[24]
McDonagh, A. M.; Whittall, I. R.; Humphrey, M. G.; Hockless, D. C. R.; Skelton, B. W.; White, A. H. Organometallic complexes for nonlinear optics VI: Syntheses of rigid-rod ruthenium σ-acetylide complexes bearing strong acceptor ligands; X-ray crystal structures of trans- [Ru(C≡CC6H4NO2-4)2(dppm)2] and trans-[RuC≡CC6H4C6H4NO2- 4,4’)2(dppm)2]. J. Organomet. Chem. 1996, 523, 33-40.
[25]
Babgi, B. A.; Kodikara, M. S.; Morshedi, M.; Wang, H.; Quintana, C.; Schwich, T.; Moxey, G. J.; Van Steerteghem, N.; Clays, K.; Stranger, R. et al. Linear optical, quadratic and cubic nonlinear optical, electrochemical, and theoretical studies of “rigid-rod” bis-alkynyl ruthenium complexes. ChemPlusChem 2018, 83, 630-642.
[26]
Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 1994, 801-802.
[27]
Zhai, L.; McCullough, R. D. Regioregular polythiophene/gold nanoparticle hybrid materials. J. Mater. Chem. 2004, 14, 141-143.
[28]
Bürgi, T. Properties of the gold-sulphur interface: From self-assembled monolayers to clusters. Nanoscale 2015, 7, 15553-15567.
[29]
Pensa, E.; Cortés, E.; Corthey, G.; Carro, P.; Vericat, C.; Fonticelli, M. H.; Benítez, G.; Rubert, A. A.; Salvarezza, R. C. The chemistry of the sulfur-gold interface: In search of a unified model. Acc. Chem. Res. 2012, 45, 1183-1192.
[30]
Castner, D.; Hinds, K.; Grainger, D. W. X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces. Langmuir 1996, 12, 5083-5086.
[31]
Qie, L.; Chen, W. M.; Xiong, X. Q.; Hu, C. C.; Zou, F.; Hu, P.; Huang, Y. H. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2015, 2, 1500195.
[32]
Mulas, A.; Hervault, Y. M.; He, X. Y.; Di Piazza, E.; Norel, L.; Rigaut, S.; Lagrost, C. Fast electron transfer exchange at self-assembled monolayers of organometallic ruthenium(II) σ-arylacetylide complexes. Langmuir 2015, 31, 7138-7147.
[33]
OriginLab Corporation. Origin User Guide; OriginLab Corporation: Northampton, MA, USA, 2001.
[34]
Green, K. A.; Cifuentes, M. P.; Corkery, T. C.; Samoc, M.; Humphrey, M. G. Switching the cubic nonlinear optical properties of an electro-, halo-, and photochromic ruthenium alkynyl complex across six states. Angew. Chem., Int. Ed. 2009, 48, 7867-7870.
[35]
Babgi, B.; Rigamonti, L.; Cifuentes, M. P.; Corkery, T. C.; Randles, M. D.; Schwich, T.; Petrie, S.; Stranger, R.; Teshome, A.; Asselberghs, I. et al. Length-dependent convergence and saturation behavior of electrochemical, linear optical, quadratic nonlinear optical, and cubic nonlinear optical properties of dipolar alkynylruthenium complexes with oligo(phenyleneethynylene) bridges. J. Am. Chem. Soc. 2009, 131, 10293-10307.
[36]
Goldmann, C.; Lazzari R.; Paquez, X.; Boissière, C.; Ribot, F.; Sanchez, C.; Chanéac C.; Portehault, D. Charge transfer at hybrid interfaces: Plasmonics of aromatic thiol-capped gold nanoparticles. ACS Nano 2015, 9, 7572-7582.
[37]
Pérez-Moreno, J.; Kuzyk, M. G. Comment on “Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers”—Increasing the nonlinear optical response by two orders of magnitude. Adv. Mater. 2011, 23, 1428-1432.
[38]
Schwich, T.; Cifuentes, M. P.; Gugger, P. A.; Samoc, M.; Humphrey, M. G. Electronic, molecular weight, molecular volume, and financial cost-scaling and comparison of two-photon absorption efficiency in disparate molecules (Organometallic complexes for nonlinear optics. 48.) - A response to “Comment on ‘Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers.’ Increasing the nonlinear response by two orders of magnitude.” Adv. Mater. 2011, 23, 1433-1435.
[39]
Liu, X.; Atwater, M.; Wang, J. H.; Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B: Biointerfaces 2007, 58, 3-7.
[40]
Moreau, J.; Lux, F.; Four, M.; Olesiak-Banska, J.; Matczyszyn, K.; Perriat, P.; Frochot, C.; Arnoux, P.; Tillement, O.; Samoc, M. et al. A 5-(difluorenyl)-1,10-phenanthroline-based Ru(II) complex as a coating agent for potential multifunctional gold nanoparticles. Phys. Chem. Chem. Phys. 2014, 16, 14826-14833.
[41]
Zhang, T. S.; Zhao, T. T.; Yuan, P. Y.; Xu, Q. H. Plasmon-enhanced two-photon excitation fluorescence and biomedical applications. In Surface Plasmon Enhanced, Coupled and Controlled Fluorescence; Geddes, C. D., Ed.; Wiley, Hoboken: New Jersey, 2017; pp 211-225.
File
12274_2020_2924_MOESM1_ESM.pdf (26.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 April 2020
Revised: 04 June 2020
Accepted: 05 June 2020
Published: 05 October 2020
Issue date: October 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We thank the Australian Research Council (DP170100411: M. G. H. and M. S.) and the National Science Centre (NCN) Poland (UMO-2016/22/M/ST4/00275: J. K. Z. and M. S.) for support of this work. C. Q. thanks Becas Chile (Agencia Nacional de Investigación y Desarrollo) for financial support in the form of a PhD scholarship (2015-72160061), J. P. L. M. thanks the Australian Government for an Australian Postgraduate Award, J. D. thanks the China Scholarship Council and the Australian National University for a CSC- ANU scholarship, and J. K. Z. thanks the Foundation for Polish Science (FNP) for support. The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility and the Centre of Advanced Microscopy at the Australian National University.

Return