Journal Home > Volume 13 , Issue 10

Attributed to the intense development and complexity in electronic devices, energy dissipation is becoming more essential nowadays. The carbonaceous materials particularly graphene (Gr)-based thermal interface materials (TIMs) are exceptional in heat management. However, because of the anisotropic behavior of Gr in composites, the TIMs having outstanding through-plane thermal conductivity (TC) are needed to fulfill the upcoming innovation in numerous devices. In order to achieve this, herein, nano-urethane linkage-based modified Gr and carbon fibers architecture termed as nanourethane linkage (NUL)-Gr/carbon fibers (CFs) is fabricated. Wherein, toluene diisocyanate is utilized to develop a novel but simple NUL to shape a new interface between graphene sheets. Interestingly, the prepared composite of NUL-Gr/CFs with polyvinylidene fluoride matrix shows outstanding performance in heat management. Owing to the unique structure of NUL-Gr/CFs, an unprecedented value of TC (~ 7.96 W·m-1·K-1) is achieved at a low filler fraction of 13.8 wt.% which translates into an improvement of ~ 3,980% of pristine polymer. The achieved outcomes elucidate the significance of the covalent interaction between graphene sheets as well as strong bonding among graphene and matrix in the composites and manifest the potential of proposed NUL-Gr/CFs architecture for practical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhancing through-plane thermal conductivity of fluoropolymer composite by developing in situ nano-urethane linkage at graphene- graphene interface

Show Author's information Muhammad Maqbool1Haichang Guo1Akbar Bashir1Ali Usman1Adeel Y. Abid1Guansong He2Yanjuan Ren1Zeeshan Ali1,3Shulin Bai1( )
Department of Materials Science and Engineering, Key Laboratory of High Eenergy Density Physics Simulation (HEDPS)/Center of Applied Physics and Technology (CAPT)/Laboratory of Turbulence and Complex System (LTCS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Engineering, Peking University, Beijing 100871, China
Institute of Chemical Materials, Chinese Academy of Engineering Physics (CAEP), Mianyang 621900, China
School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

Abstract

Attributed to the intense development and complexity in electronic devices, energy dissipation is becoming more essential nowadays. The carbonaceous materials particularly graphene (Gr)-based thermal interface materials (TIMs) are exceptional in heat management. However, because of the anisotropic behavior of Gr in composites, the TIMs having outstanding through-plane thermal conductivity (TC) are needed to fulfill the upcoming innovation in numerous devices. In order to achieve this, herein, nano-urethane linkage-based modified Gr and carbon fibers architecture termed as nanourethane linkage (NUL)-Gr/carbon fibers (CFs) is fabricated. Wherein, toluene diisocyanate is utilized to develop a novel but simple NUL to shape a new interface between graphene sheets. Interestingly, the prepared composite of NUL-Gr/CFs with polyvinylidene fluoride matrix shows outstanding performance in heat management. Owing to the unique structure of NUL-Gr/CFs, an unprecedented value of TC (~ 7.96 W·m-1·K-1) is achieved at a low filler fraction of 13.8 wt.% which translates into an improvement of ~ 3,980% of pristine polymer. The achieved outcomes elucidate the significance of the covalent interaction between graphene sheets as well as strong bonding among graphene and matrix in the composites and manifest the potential of proposed NUL-Gr/CFs architecture for practical applications.

Keywords: graphene, polymer composites, thermal interface materials

References(63)

[1]
Moore, A. L.; Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. Today 2014, 17, 163-174.
[2]
Jeon, D.; Kim, S. H.; Choi, W.; Byon, C. An experimental study on the thermal performance of cellulose-graphene-based thermal interface materials. Int. J. Heat Mass Tran. 2019, 132, 944-951.
[3]
Kostarelos, K.; Novoselov, K. S. Graphene devices for life. Nat. Nanotechnol. 2014, 9, 744-745.
[4]
Razeeb, K. M.; Dalton, E.; Cross, G. L. W.; Robinson, A. J. Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 2018, 63, 1-21.
[5]
Dai, W.; Ma, T. F.; Yan, Q. W.; Gao, J. Y.; Tan, X.; Lv, L.; Hou, H.; Wei, Q. P.; Yu, J. H.; Wu, J. B. et al. Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 2019, 13, 11561-11571.
[6]
Barani, Z.; Mohammadzadeh, A.; Geremew, A.; Huang, C. Y.; Coleman, D.; Mangolini, L.; Kargar, F.; Balandin, A. A. Thermal properties of the binary-filler hybrid composites with graphene and copper nanoparticles. Adv. Funct. Mater. 2020, 30, 1904008.
[7]
Bae, S. H.; Kum, H.; Kong, W.; Kim, Y.; Choi, C.; Lee, B.; Lin, P.; Park, Y.; Kim, J. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 2019, 18, 550-560.
[8]
Yang, H. Y.; Tang, Y. Q.; Yang, P. Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions. Nanoscale 2019, 11, 14155-14163.
[9]
Zhang, F.; Feng, Y. Y.; Qin, M. M.; Gao, L.; Li, Z. Y.; Zhao, F. L.; Zhang, Z. X.; Lv, F.; Feng, W. Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv. Funct. Mater. 2019, 29, 1901383.
[10]
Mahmood, N.; Islam, M.; Hameed, A.; Saeed, S.; Khan, A. N. Polyamide-6-based composites reinforced with pristine or functionalized multi-walled carbon nanotubes produced using melt extrusion technique. J. Compos. Mater. 2013, 48, 1197-1207.
[11]
Wang, H.; Nie, S.; Li, H.; Ali, R.; Fu, J.; Xiong, H. J.; Li, J.; Wu, Z. Q.; Lau, W. M.; Mahmood, N. et al. 3D hollow quasi-graphite capsules/ polyaniline hybrid with a high performance for room-temperature ammonia gas sensors. ACS Sensors 2019, 4, 2343-2350.
[12]
Jia, Y.; Cao, A. Y.; Bai, X.; Li, Z.; Zhang, L. H.; Guo, N.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H. et al. Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett. 2011, 11, 1901-1905.
[13]
Christensen, A.; Graham, S. Thermal effects in packaging high power light emitting diode arrays. Appl. Therm. Eng. 2009, 29, 364-371.
[14]
Aslam, S.; Sagar, R. U. R.; Liu, Y. X.; Anwar, T.; Zhang, L. W.; Zhang, M.; Mahmood, N.; Qiu, Y. J. Graphene decorated polymeric flexible materials for lightweight high areal energy lithium-ion batteries. Appl. Mater. Today 2019, 17, 123-129.
[15]
Jian, X.; Wang, H.; Rao, G. F.; Jiang, L. Y.; Wang, H. N.; Subramaniyam, C. M.; Mahmood, A.; Zhang, W. L.; Xiang, Y.; Dou, S. X. et al. Self-tunable ultrathin carbon nanocups as the electrode material of sodium-ion batteries with unprecedented capacity and stability. Chem. Eng. J. 2019, 364, 578-588.
[16]
Ali, Z.; Asif, M.; Zhang, T.; Huang, X. X.; Hou, Y. L. General approach to produce nanostructured binary transition metal selenides as high-performance sodium ion battery anodes. Small 2019, 15, 1901995.
[17]
Ali, Z.; Zhang, T.; Asif, M.; Zhao, L.; Yu, Y.; Hou, Y. L. Transition metal chalcogenide anodes for sodium storage. Mater. Today 2020, 35, 131-167.
[18]
Ren, Y. J.; Guo, H. C.; Liu, Y. H.; Lv, R. C.; Zhang, Y. F.; Maqbool, M.; Bai, S. L. A trade-off study toward highly thermally conductive and mechanically robust thermoplastic composites by injection moulding. Compos. Sci. Technol. 2019, 183, 107787.
[19]
Aftab, W.; Mahmood, A.; Guo, W. H.; Yousaf, M.; Tabassum, H.; Huang, X. Y.; Liang, Z. B.; Cao, A. Y.; Zou, R. Q. Polyurethane- based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Mater. 2019, 20, 401-409.
[20]
Aftab, W.; Huang, X. Y.; Wu, W. H.; Liang, Z. B.; Mahmood, A.; Zou, R. Q. Nanoconfined phase change materials for thermal energy applications. Energy Environ. Sci. 2018, 11, 1392-1424.
[21]
Ji, C.; Yan, C. Z.; Wang, Y.; Xiong, S. X.; Zhou, F. R.; Li, Y. Y.; Sun, R.; Wong, C. P. Thermal conductivity enhancement of CNT/MoS2/ graphene-epoxy nanocomposites based on structural synergistic effects and interpenetrating network. Compos. Part B: Eng. 2019, 163, 363-370.
[22]
Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902-907.
[23]
Dai, W.; Lv, L.; Lu, J. B.; Hou, H.; Yan, Q. W.; Alam, F. E.; Li, Y. F.; Zeng, X. L.; Yu, J. H.; Wei, Q. P. et al. A paper-like inorganic thermal interface material composed of hierarchically structured graphene/ silicon carbide nanorods. ACS Nano 2019, 13, 1547-1554.
[24]
Warzoha, R. J.; Donovan, B. F. High resolution steady-state measurements of thermal contact resistance across thermal interface material junctions. Rev. Sci. Instrum. 2017, 88, 094901.
[25]
Hameed, A.; Islam, M.; ahmad, I.; Mahmood, N.; Saeed, S.; Javed, H. Thermal and mechanical properties of carbon nanotube/epoxy nanocomposites reinforced with pristine and functionalized multiwalled carbon nanotubes. Polym. Compos. 2015, 36, 1891-1898.
[26]
Renteria, J. D.; Ramirez, S.; Malekpour, H.; Alonso, B.; Centeno, A.; Zurutuza, A.; Cocemasov, A. I.; Nika, D. L.; Balandin, A. A. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 2015, 25, 4664-4672.
[27]
Xin, G. Q.; Sun, H. T.; Hu, T.; Fard, H. R.; Sun, X.; Koratkar, N.; Borca-Tasciuc, T.; Lian, J. Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 2014, 26, 4521-4526.
[28]
Shen, B.; Zhai, W. T.; Zheng, W. G. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 2014, 24, 4542-4548.
[29]
Kong, Q. Q.; Liu, Z.; Gao, J. G.; Chen, C. M.; Zhang, Q.; Zhou, G. M.; Tao, Z. C.; Zhang, X. H.; Wang, M. Z.; Li, F. et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader. Adv. Funct. Mater. 2014, 24, 4222-4228.
[30]
Jackie, D. R.; Sylvester, R.; Hoda, M.; Beatriz, A.; Alba, C.; Amaia, Z.; Alexandr, I. C.; Denis, L. N.; Balandin, A. A. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 2015, 25, 4664-4672.
[31]
Yim, M. J.; Paik, K. W. Recent advances on anisotropic conductive adhesives (ACAs) for flat panel displays and semiconductor packaging applications. Int. J. Adhes Adhes. 2006, 26, 304-313.
[32]
Meng, X.; Pan, H.; Zhu, C. L.; Chen, Z. X.; Lu, T.; Xu, D.; Li, Y.; Zhu, S. M. Coupled chiral structure in graphene-based film for ultrahigh thermal conductivity in both in-plane and through-plane directions. ACS Appl. Mater. Interfaces 2018, 10, 22611-22622.
[33]
Yousefi, N.; Gudarzi, M. M.; Zheng, Q. B.; Aboutalebi, S. H.; Sharif, F.; Kim, J. K. Self-alignment and high electrical conductivity of ultralarge graphene oxide-polyurethane nanocomposites. J. Mater. Chem. 2012, 22, 12709-12717.
[34]
Zhang, J. W.; Shi, G.; Jiang, C.; Ju, S.; Jiang, D. Z. 3D bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader. Small 2015, 11, 6197-6204.
[35]
Ronca, S.; Igarashi, T.; Forte, G.; Rastogi, S. Metallic-like thermal conductivity in a lightweight insulator: Solid-state processed ultra high molecular weight polyethylene tapes and films. Polymer 2017, 123, 203-210.
[36]
Zhu, B. W.; Liu, J.; Wang, T. Y.; Han, M.; Valloppilly, S.; Xu, S.; Wang, X. W. Novel polyethylene fibers of very high thermal conductivity enabled by amorphous restructuring. ACS Omega 2017, 2, 3931-3944.
[37]
Song, N.; Pan, H. D.; Hou, X. S.; Cui, S. Q.; Shi, L. Y.; Ding, P. Enhancement of thermal conductivity in polyamide-6/graphene composites via a “bridge effect” of silicon carbide whiskers. RSC Adv. 2017, 7, 46306-46312.
[38]
Morsi, S. M. M.; Mohamed, H. A. A comparative study of new linear and hyperbranched polyurethanes built up from a synthesized isocyanate-terminated polyester/urethane. Polym. Bull. 2017, 74, 5011-5027.
[39]
Oprea, S.; Timpu, D.; Oprea, V. Design-properties relationships of polyurethanes elastomers depending on different chain extenders structures. J. Polym. Res. 2019, 26, 117.
[40]
Wu, S. L.; Shi, T. J.; Zhang, L. Y. Preparation and properties of amine- functionalized reduced graphene oxide/waterborne polyurethane nanocomposites. High Perform. Polym. 2015, 28, 453-465.
[41]
Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822-1873.
[42]
de Leon, A. C.; Alonso, L.; Mangadlao, J. D.; Advincula, R. C.; Pentzer, E. Simultaneous reduction and functionalization of graphene oxide via Ritter reaction. ACS Appl. Mater. Interfaces 2017, 9, 14265-14272.
[43]
Kim, N. H.; Kuila, T.; Lee, J. H. Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application. J. Mater. Chem. A 2013, 1, 1349-1358.
[44]
Daud, F. N.; Ahmad, A.; Haji Badri, K. An investigation on the properties of palm-based polyurethane solid polymer electrolyte. Int. J. Polym. Sci. 2014, 2014, Article ID 326716.
[45]
Mahmood, N.; Islam, M.; Hameed, A.; Saeed, S. Polyamide 6/multiwalled carbon nanotubes nanocomposites with modified morphology and thermal properties. Polymers 2013, 5, 1380-1391.
[46]
Jiang, Z. J.; Jiang, Z. Q. Interaction induced high catalytic activities of CoO nanoparticles grown on nitrogen-doped hollow graphene microspheres for oxygen reduction and evolution reactions. Sci. Rep. 2016, 6, 27081.
[47]
Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 2015, 6, 7760.
[48]
Li, W. C.; Cui, J.; Wang, W. W.; Zheng, D. H.; Jia, L. F.; Saeed, S.; Liu, H. D.; Rupp, R.; Kong, Y. F.; Xu, J. J. P-type lithium niobate thin films fabricated by nitrogen-doping. Materials 2019, 12, 819.
[49]
Matsoso, B. J.; Ranganathan, K.; Mutuma, B. K.; Lerotholi, T.; Jones, G.; Coville, N. J. Time-dependent evolution of the nitrogen configurations in N-doped graphene films. RSC Adv. 2016, 6, 106914-106920.
[50]
Zhao, Y. H.; Zhang, Y. F.; Bai, S. L.; Yuan, X. W. Carbon fibre/ graphene foam/polymer composites with enhanced mechanical and thermal properties. Compos. Part B: Eng. 2016, 94, 102-108.
[51]
Hyun, S. K.; Ji, U. J.; Hyeseong, L.; Seong, Y. K.; Seong, H. K.; Jaewoo, K.; Yong, C. J.; Beom. J. Y. Thermal management in polymer composites: A review of physical and structural parameters. Adv. Eng. Mater. 2018, 20, 1800204.
[52]
Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Prog. Polym. Sci. 2016, 61, 1-28.
[53]
Zhang, X. R.; Xie, X. Y.; Cai, X. Z.; Jiang, Z. Y.; Gao, T.; Ren, Y. J.; Hu, J.; Zhang, X. X. Graphene-perfluoroalkoxy nanocomposite with high through-plane thermal conductivity fabricated by hot-pressing. Nanomaterials (Basel) 2019, 9, 1320.
[54]
Feng, C. P.; Bai, L.; Shao, Y.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Chen, J.; Ni, H. Y.; Yang, W. A facile route to fabricate highly anisotropic thermally conductive elastomeric POE/NG composites for thermal management. Adv. Mater. Interfaces 2018, 5, 1700946.
[55]
Chung, S. H.; Kim, H.; Jeong, S. W. Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment. Carbon 2018, 140, 24-29.
[56]
Zahid, M.; Masood, M. T.; Athanassiou, A.; Bayer, I. S. Sustainable thermal interface materials from recycled cotton textiles and graphene nanoplatelets. Appl. Phys. Lett. 2018, 113, 044103.
[57]
Tian, X. J.; Itkis, M. E.; Haddon, R. C. Application of hybrid fillers for improving the through-plane heat transport in graphite nanoplatelet- based thermal interface layers. Sci. Rep. 2015, 5, 13108.
[58]
Qin, M. M.; Xu, Y. X.; Cao, R.; Feng, W.; Chen, L. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater. 2018, 28, 1805053.
[59]
Yang, W. X.; Zhao, Z. D.; Wu, K.; Huang, R.; Liu, T. Y.; Jiang, H.; Chen, F.; Fu, Q. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 2017, 5, 3748-3756.
[60]
Su, Z.; Wang, H.; Ye, X. Z.; Tian, K. H.; Huang, W. Q.; Xiao, C.; Tian, X. Y. Enhanced thermal conductivity of functionalized- graphene/boron nitride flexible laminated composite adhesive via a facile latex approach. Compos. Part A: Appl. Sci. Manuf. 2017, 99, 166-175.
[61]
Yao, Y. M.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 2018, 14, 1704044.
[62]
An, F.; Li, X. F.; Min, P.; Li, H. F.; Dai, Z.; Yu, Z. Z. Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon 2018, 126, 119-127.
[63]
Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156-6214.
File
12274_2020_2921_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 January 2020
Revised: 02 June 2020
Accepted: 06 June 2020
Published: 05 October 2020
Issue date: October 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the Nature Science Associate Foundation (NSAF) (No. U1730103) and the National Natural Science Foundation of China (NSFC) (No.11672002)

Return