AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A library of carbon-supported ultrasmall bimetallic nanoparticles

Shi-Long Xu1Shan-Cheng Shen1Ze-Yue Wei2Shuai Zhao1Lu-Jie Zuo1Ming-Xi Chen1Lei Wang1Yan-Wei Ding1Ping Chen3Sheng-Qi Chu4Yue Lin1( )Kun Qian2( )Hai-Wei Liang1( )
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

Small-sized bimetallic nanoparticles that possess numerous accessible metal sites and optimal geometric/electronic structures show great promise for advanced synergetic catalysis but remain synthetic challenge so far. Here, an universial synthetic method is developed for building a library of bimetallic nanoparticles on mesoporous sulfur-doped carbon supports, consisting of 24 combinations of 3 noble metals (that is, Pt, Rh, Ir) and 7 other metals, with average particle sizes ranging from 0.7 to 1.4 nm. The synthetic strategy is based on the strong metal-support interaction arising from the metal-sulfur bonding, which suppresses the metal aggregation during the H2-reduction at 700 °C and ensure the formation of small-sized and alloyed bimetallic nanoparticles. The enhanced catalytic properties of the ultrasmall bimetallic nanoparticles are demonstrated in the dehydrogenation of propane at high temperature and oxidative dehydrogenations of N-heterocycles.

Electronic Supplementary Material

Download File(s)
12274_2020_2920_MOESM1_ESM.pdf (7.4 MB)

References

[1]
Alexeev, O. S.; Gates, B. C. Supported bimetallic cluster catalysts. Ind. Eng. Chem. Res. 2003, 42, 1571-1587.
[2]
Buchwalter, P.; Rosé, J.; Braunstein, P. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 2015, 115, 28-126.
[3]
Singh, A. K.; Xu, Q. Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 2013, 5, 652-676.
[4]
Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740-1748.
[5]
Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.
[6]
Mitchell, S.; Vorobyeva, E.; Pérez-Ramírez, J. Reactivity of single- atom heterogeneous catalysts: Unique and multifaceted. Angew. Chem., Int. Ed. 2018, 57, 15316-15329.
[7]
Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797-800.
[8]
El-Sayed, M. A. Small is different: Shape-, size-, and composition- dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 2004, 37, 326-333.
[9]
Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489-1494.
[10]
Toshima, N. Polymer-protected bimetallic clusters. Preparation and application to catalysis. J. Macromol. Sci. A - Chem. 1990, 27, 1225-1238.
[11]
Zhang, H. J.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N. Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater. 2012, 11, 49-52.
[12]
Kulkarni, A.; Gates, B. C. Spectroscopic elucidation of first steps of supported bimetallic cluster formation. Angew. Chem., Int. Ed. 2009, 48, 9697-9700.
[13]
Chotisuwan, S.; Wittayakun, J.; Lobo-Lapidus, R. J.; Gates, B. C. MGO-supported cluster catalysts with Pt-Ru interactions prepared from Pt3Ru6(CO)213-H)(μ-h)3. Catal. Lett. 2007, 115, 99-107.
[14]
Fung, A. S.; Kelley, M. J.; Koningsberger, D. C.; Gates, B. C. γ-Al2O3- supported Re-Pt cluster catalyst prepared from [Re2Pt(CO)12]: Characterization by extended x-ray absorption fine structure spectroscopy and catalysis of methylcyclohexane dehydrogenation. J. Am. Chem. Soc. 1997, 119, 5877-5887.
[15]
Yang, J.; He, D. S.; Chen, W. X.; Zhu, W.; Zhang, H.; Ren, S.; Wang, X.; Yang, Q. H.; Wu, Y. E.; Li, Y. D. Bimetallic Ru-Co clusters derived from a confined alloying process within zeolite-imidazolate frameworks for efficient NH3 decomposition and synthesis. ACS Appl. Mater. Interfaces 2017, 9, 39450-39455.
[16]
Iida, T.; Zanchet, D.; Ohara, K.; Wakihara, T.; Román-Leshkov, Y. Concerted bimetallic nanocluster synthesis and encapsulation via induced zeolite framework demetallation for shape and substrate selective heterogeneous catalysis. Angew. Chem., Int. Ed. 2018, 57, 6454-6458.
[17]
Mao, J. J.; Li, J.; Pei, J. J.; Liu, Y.; Wang, D. S.; Li, Y. D. Structure regulation of noble-metal-based nanomaterials at an atomic level. Nano Today 2019, 26, 164-175.
[18]
Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science 2017, 358, 1427-1430.
[19]
Ding, K. L.; Cullen, D. A.; Zhang, L. B.; Cao, Z.; Roy, A. D.; Ivanov, I. N.; Cao, D. M. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science 2018, 362, 560-564.
[20]
Wang, L.; Chen, M. X.; Yan, Q. Q.; Xu, S. L.; Chu, S. Q.; Chen, P.; Lin, Y.; Liang, H. W. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci. Adv. 2019, 5, eaax6322.
[21]
Yan, Q. Q.; Wu, D. X.; Chu, S. Q.; Chen, Z. Q.; Lin, Y.; Chen, M. X.; Zhang, J.; Wu, X. J.; Liang, H. W. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 2019, 10, 4977.
[22]
Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J. J.; Kim, H.; Choi, M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 2016, 7, 10922.
[23]
Liu, B.; Yao, H. Q.; Song, W. Q.; Jin, L.; Mosa, I. M.; Rusling, J. F.; Suib, S. L.; He, J. Ligand-free noble metal nanocluster catalysts on carbon supports via “soft” nitriding. J. Am. Chem. Soc. 2016, 138, 4718-4721.
[24]
Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.
[25]
Wu, Z. Y.; Xu, S. L.; Yan, Q. Q.; Chen, Z. Q.; Ding, Y. W.; Li, C.; Liang, H. W.; Yu, S. H. Transition metal-assisted carbonization of small organic molecules toward functional carbon materials. Sci. Adv. 2018, 4, eaat0788.
[26]
Liang, H. W.; Brüller, S.; Dong, R. H.; Zhang, J.; Feng, X. L.; Müllen, K. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 2015, 6, 7992.
[27]
Chen, L.; Cooper, A. C.; Pez, G. P.; Cheng, H. S. Mechanistic study on hydrogen spillover onto graphitic carbon materials. J. Phys. Chem. C 2007, 111, 18995-19000.
[28]
Karim, W.; Spreafico, C.; Kleibert, A.; Gobrecht, J.; VandeVondele, J.; Ekinci, Y.; van Bokhoven, J. A. Catalyst support effects on hydrogen spillover. Nature 2017, 541, 68-71.
[29]
Zhang, X.; Cui, G. Q.; Feng, H. S.; Chen, L. F.; Wang, H.; Wang, B.; Zhang, X.; Zheng, L. R.; Hong, S.; Wei, M. Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun. 2019, 10, 5812.
[30]
Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J. G.; De, S.; Yan, N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem., Int. Ed. 2016, 55, 8319-8323.
[31]
Takahashi, M.; Koizumi, H.; Chun, W. J.; Kori, M.; Imaoka, T.; Yamamoto, K. Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons. Sci. Adv. 2017, 3, e1700101.
[32]
Wang, W. H.; Tian, X. L.; Chen, K.; Cao, G. Y. Synthesis and characterization of Pt-Cu bimetallic alloy nanoparticles by reverse micelles method. Colloids Surf. A 2006, 273, 35-42.
[33]
Kim, N. R.; Shin, K.; Jung, I.; Shim, M.; Lee, H. M. Ag-Cu bimetallic nanoparticles with enhanced resistance to oxidation: A combined experimental and theoretical study. J. Phys. Chem. C 2014, 118, 26324-26331.
[34]
Akporiaye, D.; Jensen, S.; Olsbye, U.; Rohr, F.; Rytter, E.; Rønnekleiv, M.; Spjelkavik, A. I. A novel, highly efficient catalyst for propane dehydrogenation. Ind. Eng. Chem. Res. 2001, 40, 4741-4748.
[35]
Shen, J. Y.; Hill, J. M.; Watwe, R. M.; Spiewak, B. E.; Dumesic, J. A. Microcalorimetric, infrared spectroscopic, and DFT studies of ethylene adsorption on Pt/SiO2 and Pt-Sn/SiO2 catalysts. J. Phys. Chem. B 1999, 103, 3923-3934.
[36]
Siri, G. J.; Ramallo-López, J. M.; Casella, M. L.; Fierro, J. L. G.; Requejo, F. G.; Ferretti, O. XPS and EXAFS study of supported PtSn catalysts obtained by surface organometallic chemistry on metals: Application to the isobutane dehydrogenation. Appl. Catal. A 2005, 278, 239-249.
[37]
Cui, X.; Li, Y.; Bachmann, S.; Scalone, M.; Surkus, A. E.; Junge, K.; Topf, C.; Beller, M. Synthesis and characterization of iron-nitrogen- doped graphene/core-shell catalysts: Efficient oxidative dehydrogenation of N-heterocycles. J. Am. Chem. Soc. 2015, 137, 10652-10658.
[38]
Chang, J. R.; Chang, S. L.; Lin, T. B. γ-alumina-supported Pt catalysts for aromatics reduction: A structural investigation of sulfur poisoning catalyst deactivation. J. Catal. 1997, 169, 338-346.
[39]
Chang, J. R.; Chang, S. L. Catalytic properties of γ-alumina- supported Pt catalysts for tetralin hydrogenation: Effects of sulfur-poisoning and hydrogen reactivation. J. Catal. 1998, 176, 42-51.
Nano Research
Pages 2735-2740
Cite this article:
Xu S-L, Shen S-C, Wei Z-Y, et al. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Research, 2020, 13(10): 2735-2740. https://doi.org/10.1007/s12274-020-2920-8
Topics:

704

Views

19

Crossref

N/A

Web of Science

18

Scopus

7

CSCD

Altmetrics

Received: 01 January 2020
Revised: 02 June 2020
Accepted: 06 June 2020
Published: 05 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return