Journal Home > Volume 14 , Issue 6

Doping of semiconductors, i.e., accurately modulating the charge carrier type and concentration in a controllable manner, is a key technology foundation for modern electronics and optoelectronics. However, the conventional doping technologies widely utilized in silicon industry, such as ion implantation and thermal diffusion, always fail when applied to two-dimensional (2D) materials with atomically-thin nature. Surface charge transfer doping (SCTD) is emerging as an effective and non-destructive doping technique to provide reliable doping capability for 2D materials, in particular 2D semiconductors. Herein, we summarize the recent advances and developments on the SCTD of 2D semiconductors and its application in electronic and optoelectronic devices. The underlying mechanism of STCD processes on 2D semiconductors is briefly introduced. Its impact on tuning the fundamental properties of various 2D systems is highlighted. We particularly emphasize on the SCTD-enabled high-performance 2D functional devices. Finally, the challenges and opportunities for the future development of SCTD are discussed.


menu
Abstract
Full text
Outline
About this article

Surface charge transfer doping for two-dimensional semiconductor- based electronic and optoelectronic devices

Show Author's information Yanan Wang1,§Yue Zheng1,2,§Cheng Han2( )Wei Chen1,3,4,5( )
Department of Physics, National University of Singapore, Singapore 117542, Singapore
SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China

§ Yanan Wang and Yue Zheng contributed equally to this work.

Abstract

Doping of semiconductors, i.e., accurately modulating the charge carrier type and concentration in a controllable manner, is a key technology foundation for modern electronics and optoelectronics. However, the conventional doping technologies widely utilized in silicon industry, such as ion implantation and thermal diffusion, always fail when applied to two-dimensional (2D) materials with atomically-thin nature. Surface charge transfer doping (SCTD) is emerging as an effective and non-destructive doping technique to provide reliable doping capability for 2D materials, in particular 2D semiconductors. Herein, we summarize the recent advances and developments on the SCTD of 2D semiconductors and its application in electronic and optoelectronic devices. The underlying mechanism of STCD processes on 2D semiconductors is briefly introduced. Its impact on tuning the fundamental properties of various 2D systems is highlighted. We particularly emphasize on the SCTD-enabled high-performance 2D functional devices. Finally, the challenges and opportunities for the future development of SCTD are discussed.

Keywords: surface charge transfer doping, two-dimensional (2D) semiconductors, property modulation, electronic devices, optoelectronic devices

References(145)

[1]
S. A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd ed.; Oxford University Press: New York, 2001.
[2]
I. Akasaki,; H. Amano,; M. Kito,; K. Hiramatsu, Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p-n junction LED. J. Lumin. 1991, 48-49, 666-670.
[3]
Y. I. Alivov,; M. V. Chukichev,; V. A. Nikitenko, Green luminescence band of zinc oxide films copper-doped by thermal diffusion. Semiconductors 2004, 38, 31-35.
[4]
S. Koizumi,; K. Watanabe,; M. Hasegawa,; H. Kanda, Ultraviolet emission from a diamond pn junction. Science 2001, 292, 1899-1901.
[5]
J. P. Donnelly,; A. G. Milnes, The photovoltaic characteristics of p-n Ge-Si and Ge-GaAs heterojunctions. Int. J. Electron. 1966, 20, 295-310.
[6]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V Dubonos,; I. V Grigorieva,; A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[7]
F. Schwierz, Graphene transistors. Nat. Nanotechnol. 2010, 5, 487-496.
[8]
C. L. Tan,; X. H. Cao,; X. J. Wu,; Q. Y. He,; J. Yang,; X. Zhang,; J. Z. Chen,; W. Zhao,; S. K. Han,; G. H. Nam, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.
[9]
Q. H. Wang,; K. Kalantar-Zadeh,; A. Kis,; J. N. Coleman,; M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-715.
[10]
S. Manzeli,; D. Ovchinnikov,; D. Pasquier,; O. V. Yazyev,; A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
[11]
Z. H. Hu,; T. C. Niu,; R. Guo,; J. L. Zhang,; M. Lai,; J. He,; L. Wang,; W. Chen, Two-dimensional black phosphorus: Its fabrication, functionalization and applications. Nanoscale 2018, 10, 21575-21603.
[12]
B. Wang,; S. P. Zhong,; Z. B. Zhang,; Z. Q. Zheng,; Y. P. Zhang,; H. Zhang, Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors. Appl. Mater. Today 2019, 15, 115-138.
[13]
Z. H. Hu,; Z. T. Wu,; C. Han,; J. He,; Z. H. Ni,; W. Chen, Two- dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100-3128.
[14]
N. J. Huo,; G. Konstantatos, Recent progress and future prospects of 2D-based photodetectors. Adv. Mater. 2018, 30, 1801164.
[15]
B. Peng,; P. K. Ang,; K. P. Loh, Two-dimensional dichalcogenides for light-harvesting applications. Nano Today 2015, 10, 128-137.
[16]
X. F. Qian,; J. W. Liu,; L. Fu,; J. Li, Quantum spin Hall effect in two- dimensional transition metal dichalcogenides. Science 2014, 346, 1344-1347.
[17]
M. M. Ugeda,; A. Pulkin,; S. J. Tang,; H. Ryu,; Q. S. Wu,; Y. Zhang,; D. Wong,; Z. Pedramrazi,; A. Martín-Recio,; Y. Chen, et al. Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nat. Commun. 2018, 9, 3401.
[18]
J. R. Schaibley,; H. Y. Yu,; G. Clark,; P. Rivera,; J. S. Ross,; K. L. Seyler,; W. Yao,; X. D. Xu, Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.
[19]
L. K. Li,; Y. J. Yu,; G. J. Ye,; Q. Q. Ge,; X. D. Ou,; H. Wu,; D. L. Feng,; X. H. Chen,; Y. B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[20]
L. K. Li,; J. Kim,; C. H. Jin,; G. J. Ye,; D. Y. Qiu,; F. H. da Jornada,; Z. W. Shi,; L. Chen,; Z. C. Zhang,; F. Y. Yang, et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21-25.
[21]
L. K. Li,; G. J. Ye,; V. Tran,; R. X. Fei,; G. R. Chen,; H. C. Wang,; J. Wang,; K. J. Watanabe,; T. Taniguchi,; L. Yang, et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol. 2015, 10, 608-613.
[22]
G. Long,; D. Maryenko,; J. Y. Shen,; S. G. Xu,; J. Q. Hou,; Z. F. Wu,; W. K. Wong,; T. Y. Han,; J. X. Z. Lin,; Y. Cai, et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 2016, 16, 7768-7773.
[23]
Y. J. Xu,; X. Y. Shi,; Y. S. Zhang,; H. T. Zhang,; Q. L. Zhang,; Z. L. Huang,; X. F. Xu,; J. Guo,; H. Zhang,; L. T. Sun, et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun. 2020, 11, 1330.
[24]
A. Favron,; E. Gaufrès,; F. Fossard,; A. L. Phaneuf-L’Heureux,; N. Y. W. Tang,; P. L. Lévesque,; A. Loiseau,; R. Leonelli,; S. Francoeur,; R. Martel, Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 14, 826-832.
[25]
Z. H. Hu,; Q. Li,; B. Lei,; Q. H. Zhou,; D. Xiang,; Z. Y. Lyu,; F. Hu,; J. Y. Wang,; Y. J. Ren,; R. Guo, et al. Water-catalyzed oxidation of few-layer black phosphorous in a dark environment. Angew. Chem., Int. Ed. 2017, 56, 9131-9135.
[26]
C. Han,; Z. H. Hu,; A. Carvalho,; N. Guo,; J. L. Zhang,; F. Hu,; D. Xiang,; J. Wu,; B. Lei,; L. Wang, et al. Oxygen induced strong mobility modulation in few-layer black phosphorus. 2D Mater. 2017, 4, 021007.
[27]
J. L. Zhang,; S. T. Zhao,; M. Telychko,; S. Sun,; X. Lian,; J. Su,; A. Tadich,; D. C. Qi,; J. C. Zhuang,; Y. Zheng, et al. Reversible oxidation of blue phosphorus monolayer on Au(111). Nano Lett. 2019, 19, 5340-5346.
[28]
K. Xu,; L. Yin,; Y. Huang,; T. A. Shifa,; J. W. Chu,; F. Wang,; R. Q. Cheng,; Z. X. Wang,; J. He, Synthesis, properties and applications of 2D layered MIIIXVI (M = Ga, In; X= S, Se, Te) materials. Nanoscale 2016, 8, 16802-16818.
[29]
X. Zhou,; Q. Zhang,; L. Gan,; H. Q. Li,; J. Xiong,; T. Y. Zhai, Booming development of group IV-VI semiconductors: Fresh blood of 2D family. Adv. Sci. 2016, 3, 1600177.
[30]
Z. B. Yang,; J. H. Hao, Recent progress in 2D layered III-VI semiconductors and their heterostructures for optoelectronic device applications. Adv. Mater. Technol. 2019, 4, 1900108.
[31]
H. Cai,; Y. Y. Gu,; Y. C. Lin,; Y. L. Yu,; D. B. Geohegan,; K. Xiao, Synthesis and emerging properties of 2D layered III-VI metal chalcogenides. Appl. Phys. Rev. 2019, 6, 041312.
[32]
Z. Y. Hu,; Y. C. Ding,; X. M. Hu,; W. H. Zhou,; X. C. Yu,; S. L. Zhang, Recent progress in 2D group IV-IV monochalcogenides: Synthesis, properties and applications. Nanotechnology 2019, 30, 252001.
[33]
D. A. Bandurin,; A. V. Tyurnina,; G. L. Yu,; A. Mishchenko,; V. Zólyomi,; S. V. Morozov,; R. K. Kumar,; R. V. Gorbachev,; Z. R. Kudrynskyi,; S. Pezzini, et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2017, 12, 223-227.
[34]
S. L. Zhao,; H. Wang,; Y. Zhou,; L. Liao,; Y. Jiang,; X. Yang,; G. C. Chen,; M. Lin,; Y. Wang,; H. L. Peng, et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 2015, 8, 288-295.
[35]
P. Luo,; F. W. Zhuge,; Q. F. Zhang,; Y. Q. Chen,; L. Lv,; Y. Huang,; H. Q. Li,; T. Y. Zhai, Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz. 2019, 4, 26-51.
[36]
K. H. Zhang,; J. Robinson, Doping of two-dimensional semiconductors: A rapid review and outlook. MRS Adv. 2019, 4, 2743-2757.
[37]
D. S. Schulman,; A. J. Arnold,; S. Das, Contact engineering for 2D materials and devices. Chem. Soc. Rev. 2018, 47, 3037-3058.
[38]
B. W. H. Baugher,; H. O. H. Churchill,; Y. F. Yang,; P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262-267.
[39]
M. Buscema,; D. J. Groenendijk,; G. A. Steele,; H. S. J. Van Der Zant,; A. Castellanos-Gomez, Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 2014, 5, 4651.
[40]
T. Roy,; M. Tosun,; X. Cao,; H. Fang,; D. H. Lien,; P. D. Zhao,; Y. Z. Chen,; Y. L. Chueh,; J. Guo,; A. Javey, Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 2015, 9, 2071-2079.
[41]
W. Chen,; D. C. Qi,; X. Y. Gao,; A. T. S. Wee, Surface transfer doping of semiconductors. Prog. Surf. Sci. 2009, 84, 279-321.
[42]
H. Y. Mao,; Y. H. Lu,; J. D. Lin,; S. Zhong,; A. T. S. Wee,; W. Chen, Manipulating the electronic and chemical properties of graphene via molecular functionalization. Prog. Surf. Sci. 2013, 88, 132-159.
[43]
X. J. Zhang,; Z. B. Shao,; X. H. Zhang,; Y. Y. He,; J. S. Jie, Surface charge transfer doping of low-dimensional nanostructures toward high- performance nanodevices. Adv. Mater. 2016, 28, 10409-10442.
[44]
Y. D. Zhao,; K. Xu,; F. Pan,; C. J. Zhou,; F. C. Zhou,; Y. Chai, Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater. 2017, 27, 1603484.
[45]
M. Kröger,; S. Hamwi,; J. Meyer,; T. Riedl,; W. Kowalsky,; A. Kahn, P-type doping of organic wide band gap materials by transition metal oxides: A case-study on molybdenum trioxide. Org. Electron. 2009, 10, 932-938.
[46]
J. Meyer,; S. Hamwi,; S. Schmale,; T. Winkler,; H. H. Johannes,; T. Riedl,; W. Kowalsky, A strategy towards p-type doping of organic materials with HOMO levels beyond 6 eV using tungsten oxide. J. Mater. Chem. 2009, 19, 702-705.
[47]
J. H. Lee,; D. S. Leem,; J. J. Kim, Effect of host organic semiconductors on electrical doping. Org. Electron. 2010, 11, 486-489.
[48]
J. D. Lin,; C. Han,; F. Wang,; R. Wang,; D. Xiang,; S. Q. Qin,; X. A. Zhang,; L. Wang,; H. Zhang,; A. T. S. Wee, et al. Electron- doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323-5329.
[49]
D. Xiang,; C. Han,; J. Wu,; S. Zhong,; Y. Y. Liu,; J. D. Lin,; X. A. Zhang,; W. P. Hu,; B. Özyilmaz,; A. H. C. Neto, et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 2015, 6, 6485.
[50]
D. Xiang,; C. Han,; Z. H. Hu,; B. Lei,; Y. Y. Liu,; L. Wang,; W. P. Hu,; W. Chen, Surface transfer doping-induced, high-performance graphene/ silicon schottky junction-based, self-powered photodetector. Small 2015, 11, 4829-4836.
[51]
Y. L. Huang,; Y. J. Zheng,; Z. B. Song,; D. Z. Chi,; A. T. S. Wee,; S. Y. Quek, The organic-2D transition metal dichalcogenide heterointerface. Chem. Soc. Rev. 2018, 47, 3241-3264.
[52]
D. Kiriya,; M. Tosun,; P. D. Zhao,; J. S. Kang,; A. Javey, Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853-7856.
[53]
S. Mouri,; Y. Miyauchi,; K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.
[54]
H. G. Ji,; P. Solís-Fernández,; D. Yoshimura,; M. Maruyama,; T. Endo,; Y. Miyata,; S. Okada,; H. Ago, Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Adv. Mater. 2019, 31, 1903613.
[55]
C. J. L. de la Rosa,; A. Nourbakhsh,; M. Heyne,; I. Asselberghs,; C. Huyghebaert,; I. Radu,; M. Heyns,; S. De Gendt, Highly efficient and stable MoS2 FETs with reversible n-doping using a dehydrated poly(vinyl-alcohol) coating. Nanoscale 2017, 9, 258-265.
[56]
S. Andleeb,; A. Kumar Singh,; J. Eom, Chemical doping of MoS2 multilayer by p-toluene sulfonic acid. Sci. Technol. Adv. Mater. 2015, 16, 035009 .
[57]
D. Sarkar,; X. J. Xie,; J. H. Kang,; H. J. Zhang,; W. Liu,; J. Navarrete,; M. Moskovits,; K. Banerjee, Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing. Nano Lett. 2015, 15, 2852-2862.
[58]
S. J. R. Tan,; I. Abdelwahab,; Z. J. Ding,; X. X. Zhao,; T. S. Yang,; G. Z. J. Loke,; H. Lin,; I. Verzhbitskiy,; S. M. Poh,; H. Xu, et al. Chemical stabilization of 1T′ phase transition metal dichalcogenides with giant optical kerr nonlinearity. J. Am. Chem. Soc. 2017, 139, 2504-2511.
[59]
M. J. Li,; C. Y. Lin,; S. H. Yang,; Y. M. Chang,; J. K. Chang,; F. S. Yang,; C. R. Zhong,; W. B. Jian,; C. H. Lien,; C. H. Ho, et al. High mobilities in layered InSe transistors with indium-encapsulation- induced surface charge doping. Adv. Mater. 2018, 30, 1803690.
[60]
Y. D. Liu,; Y. Q. Cai,; G. Zhang,; Y. W. Zhang,; K. W. Ang, Al- doped black phosphorus p-n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 2017, 27, 1604638.
[61]
S. P. Koenig,; R. A. Doganov,; L. Seixas,; A. Carvalho,; J. Y. Tan,; K. Watanabe,; T. Taniguchi,; N. Yakovlev,; A. H. C. Neto,; B. Özyilmaz, Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 2016, 16, 2145-2151.
[62]
W. Luo,; M. J. Zhu,; G. Peng,; X. M. Zheng,; F. Miao,; S. X. Bai,; X. A. Zhang,; S. Q. Qin, Carrier modulation of ambipolar few-layer MoTe2 transistors by MgO surface charge transfer doping. Adv. Funct. Mater. 2018, 28, 1704539.
[63]
Y. N. Wang,; D. Xiang,; Y. Zheng,; T. Liu,; X. Ye,; J. Gao,; H. Yang,; C. Han,; W. Chen, Van der Waals heterostructures with tunable tunneling behavior enabled by MoO3 surface functionalization. Adv. Opt. Mater. 2020, 8, 1901867.
[64]
S. Chuang,; C. Battaglia,; A. Azcatl,; S. McDonnell,; J. S. Kang,; X. T. Yin,; M. Tosun,; R. Kapadia,; H. Fang,; R. M. Wallace, et al. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 2014, 14, 1337-1342.
[65]
S. Tongay,; J. Zhou,; C. Ataca,; J. Liu,; J. S. Kang,; T. S. Matthews,; L. You,; J. B. Li,; J. C. Grossman,; J. Q. Wu, Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831-2836.
[66]
B. L. Liu,; L. Chen,; G. Liu,; A. N. Abbas,; M. Fathi,; C. W. Zhou, High- performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304-5314.
[67]
A. N. Abbas,; B. L. Liu,; L. Chen,; Y. Q. Ma,; S. Cong,; N. Aroonyadet,; M. Köpf,; T. Nilges,; C. W. Zhou, Black phosphorus gas sensors. ACS Nano 2015, 9, 5618-5624.
[68]
F. K. Perkins,; A. L. Friedman,; E. Cobas,; P. M. Campbell,; G. G. Jernigan,; B. T. Jonker, Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668-673.
[69]
D. S. Qu,; X. C. Liu,; M. Huang,; C. M. Lee,; F. Ahmed,; H. Kim,; R. S. Ruoff,; J. Hone,; W. J. Yoo, Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater. 2017, 29, 1606433.
[70]
R. Guo,; Q. Li,; Y. Zheng,; B. Lei,; H. C. Sun,; Z. H. Hu,; J. L. Zhang,; L. Wang,; E. Longhi,; S. Barlow, et al. Degenerate electron-doping in two-dimensional tungsten diselenide with a dimeric organometallic reductant. Mater. Today 2019, 30, 26-33.
[71]
C. Han,; J. D. Lin,; D. Xiang,; C. C. Wang,; L. Wang,; W. Chen, Improving chemical vapor deposition graphene conductivity using molybdenum trioxide: An in-situ field effect transistor study. Appl. Phys. Lett. 2013, 103, 263117.
[72]
C. I. Wu,; C. T. Lin,; Y. H. Chen,; M. H. Chen,; Y. J. Lu,; C. C. Wu, Electronic structures and electron-injection mechanisms of cesium- carbonate-incorporated cathode structures for organic light-emitting devices. Appl. Phys. Lett. 2006, 88, 152104.
[73]
J. S. Huang,; Z. Xu,; Y. Yang, Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate. Adv. Funct. Mater. 2007, 17, 1966-1973.
[74]
C. H. Chen,; C. L. Wu,; J. Pu,; M. H. Chiu,; P. Kumar,; T. Takenobu,; L. J. Li, Hole mobility enhancement and p-doping in monolayer WSe2 by gold decoration. 2D Mater. 2014, 1, 034001.
[75]
C. Han,; Z. H. Hu,; L. C. Gomes,; Y. Bao,; A. Carvalho,; S. J. R. Tan,; B. Lei,; D. Xiang,; J. Wu,; D. Y. Qi, et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett. 2017, 17, 4122-4129.
[76]
Z. J. Li,; H. Qiao,; Z. N. Guo,; X. H. Ren,; Z. Y. Huang,; X. Qi,; S. C. Dhanabalan,; J. S. Ponraj,; D. Zhang,; J. Q. Li, et al. High- performance photo-electrochemical photodetector based on liquid- exfoliated few-layered InSe nanosheets with enhanced stability. Adv. Funct. Mater. 2018, 28, 1705237.
[77]
Y. D. Liu,; K. W. Ang, Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano 2017, 11, 7416-7423.
[78]
B. C. Deng,; V. Tran,; Y. J. Xie,; H. Jiang,; C. Li,; Q. S. Guo,; X. M. Wang,; H. Tian,; S. J. Koester,; H. Wang, et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun. 2017, 8, 14474.
[79]
H. M. Li,; D. Lee,; D. S. Qu,; X. C. Liu,; J. Ryu,; A. Seabaugh,; W. J. Yoo, Ultimate thin vertical p-n junction composed of two- dimensional layered molybdenum disulfide. Nat. Commun. 2015, 6, 6564.
[80]
Y. Li,; S. X. Yang,; J. B. Li, Modulation of the electronic properties of ultrathin black phosphorus by strain and electrical field. J. Phys. Chem. C 2014, 118, 23970-23976.
[81]
Y. P. Liu,; Z. Z. Qiu,; A. Carvalho,; Y. Bao,; H. Xu,; S. J. R. Tan,; W. Liu,; A. H. C. Neto,; K. P. Loh,; J. Lu, Gate-tunable giant Stark effect in few-layer black phosphorus. Nano Lett. 2017, 17, 1970-1977.
[82]
A. S. Rodin,; A. Carvalho,; A. H. C. Neto, Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 2014, 112, 176801.
[83]
W. J. Zhang,; C. T. Lin,; K. K. Liu,; T. Tite,; C. Y. Su,; C. H. Chang,; Y. H. Lee,; C. W. Chu,; K. H. Wei,; J. L. Kuo, et al. Opening an electrical band gap of bilayer graphene with molecular doping. ACS Nano 2011, 5, 7517-7524.
[84]
T. Takahashi,; K. Sugawara,; E. Noguchi,; T. Sato,; T. Takahashi, Band-gap tuning of monolayer graphene by oxygen adsorption. Carbon 2014, 73, 141-145.
[85]
S. Dey,; H. S. S. R. Matte,; S. N. Shirodkar,; U. V. Waghmare,; C. N. R. Rao, Charge-transfer interaction between few-layer MoS2 and tetrathiafulvalene. Chem.—Asian J. 2013, 8, 1780-1784.
[86]
J. Kim,; S. S. Baik,; S. H. Ryu,; Y. Sohn,; S. Park,; B. G. Park,; J. Denlinger,; Y. Yi,; H. J. Choi,; K. S. Kim, Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349, 723-726.
[87]
D. Y. Qi,; C. Han,; X. M. Rong,; X. W. Zhang,; M. Chhowalla,; A. T. S. Wee,; W. J. Zhang, Continuously tuning electronic properties of few-layer molybdenum ditelluride with in situ aluminum modification toward ultrahigh gain complementary inverters. ACS Nano 2019, 13, 9464-9472.
[88]
Y. J. Gong,; H. T. Yuan,; C. L. Wu,; P. Z. Tang,; S. Z. Yang,; A. K. Yang,; G. D. Li,; B. F. Liu,; J. Van De Groep,; M. L. Brongersma, et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 2018, 13, 294-299.
[89]
D. Voiry,; A. Mohite,; M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702-2712.
[90]
Y. Q. Ma,; B. L. Liu,; A. Y. Zhang,; L. Chen,; M. Fathi,; C. F. Shen,; A. N. Abbas,; M. Y. Ge,; M. Mecklenburg,; C. W. Zhou, Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 2015, 9, 7383-7391.
[91]
A. Nourbakhsh,; A. Zubair,; R. N. Sajjad,; T. K. G. Amir,; W. Chen,; S. A. Fang,; X. Ling,; J. Kong,; M. S. Dresselhaus,; E. Kaxiras, et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 2016, 16, 7798-7806.
[92]
X. F. Qian,; J. W. Liu,; L. Fu,; J. Li, Quantum spin Hall effect in two- dimensional transition metal dichalcogenides. Science 2014, 346, 1344-1347.
[93]
S. J. Tang,; C. F. Zhang,; D. Wong,; Z. Pedramrazi,; H. Z. Tsai,; C. J. Jia,; B. Moritz,; M. Claassen,; H. Ryu,; S. Kahn, et al. Quantum spin Hall state in monolayer 1T’-WTe2. Nat. Phys. 2017, 13, 683-687.
[94]
S. N. Shirodkar,; U. V. Waghmare, Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 2014, 112, 157601.
[95]
D. H. Keum,; S. Cho,; J. H. Kim,; D. H. Choe,; H. J. Sung,; M. Kan,; H. Kang,; J. Y. Hwang,; S. W. Kim,; H. J. Yang, et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482-486.
[96]
Y. Wang,; J. Xiao,; H. Y. Zhu,; Y. Li,; Y. Alsaid,; K. Y. Fong,; Y. Zhou,; S. Q. Wang,; W. Shi,; Y. Wang, et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 2017, 550, 487-491.
[97]
Y. C. Lin,; D. O. Dumcenco,; Y. S. Huang,; K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391-396.
[98]
K. K. Amara,; Y. F. Chen,; Y. C. Lin,; R. Kumar,; E. Okunishi,; K. Suenaga,; S. Y. Quek,; G. Eda, Dynamic structural evolution of metal-metal bonding network in monolayer WS2. Chem. Mater. 2016, 28, 2308-2314.
[99]
S. Cho,; S. Kim,; J. H. Kim,; J. Zhao,; J. Seok,; D. H. Keum,; J. Baik,; D. H. Choe,; K. J. Chang,; K. Suenaga, et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625-628.
[100]
S. Song,; D. H. Keum,; S. Cho,; D. Perello,; Y. Kim,; Y. H. Lee, Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett. 2016, 16, 188-193.
[101]
B. Lei,; Y. Y. Pan,; Z. H. Hu,; J. L. Zhang,; D. Xiang,; Y. Zheng,; R. Guo,; C. Han,; L. H. Wang,; J. Lu, et al. Direct observation of semiconductor-metal phase transition in bilayer tungsten diselenide induced by potassium surface functionalization. ACS Nano 2018, 12, 2070-2077.
[102]
A. Splendiani,; L. Sun,; Y. B. Zhang,; T. S. Li,; J. Kim,; C. Y. Chim,; G. Galli,; F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
[103]
G. Eda,; H. Yamaguchi,; D. Voiry,; T. Fujita,; M. W. Chen,; M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.
[104]
H. R. Gutiérrez,; N. Perea-López,; A. L. Elías,; A. Berkdemir,; B. Wang,; R. T. Lv,; F. López-Urías,; V. H. Crespi,; H. Terrones,; M. Terrones, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447-3454.
[105]
K. F. Mak,; K. L. He,; C. Lee,; G. H. Lee,; J. Hone,; T. F. Heinz,; J. Shan, Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207-211.
[106]
N. Peimyoo,; W. H. Yang,; J. Z. Shang,; X. N. Shen,; Y. L. Wang,; T. Yu, Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano 2014, 8, 11320-11329.
[107]
M. Amani,; D. H. Lien,; D. Kiriya,; J. Xiao,; A. Azcatl,; J. Noh,; S. R. Madhvapathy,; R. Addou,; K. C. Santosh,; M. Dubey, et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065-1068.
[108]
Z. W. Li,; R. Q. Ye,; R. Feng,; Y. M. Kang,; X. Zhu,; J. M. Tour,; Z. Y. Fang, Graphene quantum dots doping of MoS2 monolayers. Adv. Mater. 2015, 27, 5235-5240.
[109]
B. Chakraborty,; A. Bera,; D. V. S. Muthu,; S. Bhowmick,; U. V Waghmare,; A. K. Sood, Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.
[110]
H. Y. Park,; S. R. Dugasani,; D. H. Kang,; J. Jeon,; S. K. Jang,; S. Lee,; Y. Roh,; S. H. Park,; J. H. Park, N- and p-type doping phenomenon by artificial DNA and M-DNA on two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 11603-11613.
[111]
Y. Li,; C. Y. Xu,; P. A. Hu,; L. Zhen, Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 2013, 7, 7795-7804.
[112]
A. Allain,; J. H. Kang,; K. Banerjee,; A. Kis, Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195-1205.
[113]
C. Kim,; I. Moon,; D. Lee,; M. S. Choi,; F. Ahmed,; S. Nam,; Y. Cho,; H. J. Shin,; S. Park,; W. J. Yoo, Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017, 11, 1588-1596.
[114]
H. Fang,; M. Tosun,; G. Seol,; T. C. Chang,; K. Takei,; J. Guo,; A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991-1995.
[115]
H. Fang,; S. Chuang,; T. C. Chang,; K. Takei,; T. Takahashi,; A. Javey, High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788-3792.
[116]
Y. C. Du,; H. Liu,; A. T. Neal,; M. W. Si,; P. D. Ye, Molecular doping of multilayer MoS2 field-effect transistors: Reduction in sheet and contact resistances. IEEE Electron Device Lett. 2013, 34, 1328-1330.
[117]
L. M. Yang,; K. Majumdar,; H. Liu,; Y. C. Du,; H. Wu,; M. Hatzistergos,; P. Y. Hung,; R. Tieckelmann,; W. Tsai,; C. Hobbs, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275-6280.
[118]
H. M. W. Khalil,; M. F. Khan,; J. Eom,; H. Noh, Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance. ACS Appl. Mater. Interfaces 2015, 7, 23589-23596.
[119]
X. C. Liu,; D. S. Qu,; J. Ryu,; F. Ahmed,; Z. Yang,; D. Lee,; W. J. Yoo, P-type polar transition of chemically doped multilayer MoS2 transistor. Adv. Mater. 2016, 28, 2345-2351.
[120]
R. Kappera,; D. Voiry,; S. E. Yalcin,; B. Branch,; G. Gupta,; A. D. Mohite,; M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.
[121]
L. F. Sun,; X. X. Yan,; J. Y. Zheng,; H. D. Yu,; Z. X. Lu,; S. P. Gao,; L. Liu,; X. Q. Pan,; D. Wang,; Z. G. Wang, et al. Layer- dependent chemically induced phase transition of two-dimensional MoS2. Nano Lett. 2018, 18, 3435-3440.
[122]
M. S. Choi,; D. S. Qu,; D. Lee,; X. C. Liu,; K. Watanabe,; T. Taniguchi,; W. J. Yoo, Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano 2014, 8, 9332-9340.
[123]
M. Tosun,; S. Chuang,; H. Fang,; A. B. Sachid,; M. Hettick,; Y. J. Lin,; Y. P. Zeng,; A. Javey, High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 2014, 8, 4948-4953.
[124]
Y. X. Ke,; D. Y. Qi,; C. Han,; J. D. Liu,; J. Q. Zhu,; Y. J. Xiang,; W. J. Zhang, Facile p-doping of few-layer MoTe2 by controllable surface oxidation toward high-performance complementary devices. ACS Appl. Electron. Mater. 2020, 2, 920-926.
[125]
J. Y. Lim,; A. Pezeshki,; S. Oh,; J. S. Kim,; Y. T. Lee,; S. Yu,; D. K. Hwang,; G. H. Lee,; H. J. Choi,; S. Im, Homogeneous 2D MoTe2 p-n junctions and CMOS inverters formed by atomic-layer- deposition-induced doping. Adv. Mater. 2017, 29, 1701798.
[126]
Y. J. Xu,; J. Yuan,; K. Zhang,; Y. Hou,; Q. Sun,; Y. M. Yao,; S. J. Li,; Q. L. Bao,; H. Zhang,; Y. G. Zhang, Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 2017, 27, 1702211.
[127]
G. C. Wang,; L. H. Bao,; T. F. Pei,; R. S. Ma,; Y. Y. Zhang,; L. L. Sun,; G. Y. Zhang,; H. F. Yang,; J. J. Li,; C. Z. Gu, et al. Introduction of interfacial charges to black phosphorus for a family of planar devices. Nano Lett. 2016, 16 6870-6878.
[128]
L. L. Yu,; A. Zubair,; E. J. G. Santos,; X. Zhang,; Y. X. Lin,; Y. H. Zhang,; T. Palacios, High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett. 2015, 15, 4928-4934.
[129]
B. Lei,; Y. Zheng,; Z. H. Hu,; R. Guo,; D. Xiang,; T. Liu,; Y. Wang,; M. Lai,; J. He,; W. Chen, Nondestructive hole doping enabled photocurrent enhancement of layered tungsten diselenide. 2D Mater. 2019, 6, 024002.
[130]
M. X. Sun,; D. Xie,; Y. L. Sun,; W. W. Li,; T. L. Ren, Locally hydrazine doped WSe2 pn junction toward high-performance photodetectors. Nanotechnology 2018, 29, 015203.
[131]
X. C. Yu,; S. L. Zhang,; H. B. Zeng,; Q. J. Wang, Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy 2016, 25, 34-41.
[132]
S. D. Lei,; F. F. Wen,; L. H. Ge,; S. Najmaei,; A. George,; Y. J. Gong,; W. L. Gao,; Z. H. Jin,; B. Li,; J. Lou, et al. An atomically layered InSe avalanche photodetector. Nano Lett. 2015, 15, 3048-3055.
[133]
J. D. Yao,; Z. Q. Zheng,; G. W. Yang, All-layered 2D optoelectronics: A high-performance UV-Vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes. Adv. Funct. Mater. 2017, 27, 1701823.
[134]
Y. J. Xu,; J. Yuan,; L. F. Fei,; X. L. Wang,; Q. L. Bao,; Y. Wang,; K. Zhang,; Y. G. Zhang, Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small 2016, 12, 5000-5007.
[135]
L. Xie,; L. Guo,; W. Z. Yu,; T. T. Kang,; R. K. Zheng,; K. Zhang, Ultrasensitive negative photoresponse in 2D Cr2Ge2Te6 photodetector with light-induced carrier trapping. Nanotechnology 2018, 29, 464002.
[136]
W. L. Guo,; Z. Dong,; Y. J. Xu,; C. L. Liu,; D. C. Wei,; L. B. Zhang,; X. Y. Shi,; C. Guo,; H. Xu,; G. Chen, et al. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices. Adv. Sci. 2020, 7, 1902699.
[137]
S. H. Jo,; D. H. Kang,; J. Shim,; J. Jeon,; M. H. Jeon,; G. Yoo,; J. Kim,; J. Lee,; G. Y. Yeom,; S. Lee, et al. A High-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater. 2016, 28, 4824-4831.
[138]
W. Chen,; X. Y. Gao,; D. C. Qi,; S. Chen,; Z. K. Chen,; A. T. S. Wee, Surface-transfer doping of organic semiconductors using functionalized self-assembled monolayers. Adv. Funct. Mater. 2007, 17, 1339-1344.
[139]
D. H. Kang,; M. S. Kim,; J. Shim,; J. Jeon,; H. Y. Park,; W. S. Jung,; H. Y. Yu,; C. H. Pang,; S. Lee,; J. H. Park, High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219-4227.
[140]
B. Lei,; Z. H. Hu,; D. Xiang,; J. Y. Wang,; G. Eda,; C. Han,; W. Chen, Significantly enhanced optoelectronic performance of tungsten diselenide phototransistor via surface functionalization. Nano Res. 2017, 10, 1282-1291.
[141]
J. C. Sun,; Y. Y. Wang,; S. Q. Guo,; B. S. Wan,; L. Q. Dong,; Y. D. Gu,; C. Song,; C. F. Pan,; Q. H. Zhang,; L. Gu, et al. Lateral 2D WSe2 p-n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics. Adv. Mater. 2020, 32, 1906499.
[142]
J. Gao,; H. Yang,; H. Y. Mao,; T. Liu,; Y. Zheng,; Y. N. Wang,; D. Xiang,; C. Han,; W. Chen, Out-of-plane homojunction enabled high performance SnS2 lateral phototransistor. Adv. Opt. Mater. 2020, 8, 1901971.
[143]
N. J. Huo,; G. Konstantatos, Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 pn homojunction. Nat. Commun. 2017, 8, 572.
[144]
C. L. Li,; Q. Cao,; F. Z. Wang,; Y. Q. Xiao,; Y. B. Li,; J. J. Delaunay,; H. W. Zhu, Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 2018, 47, 4981-5037.
[145]
S. J. Wi,; H. Kim,; M. K. Chen,; H. Nam,; L. J. Guo,; E. Meyhofer,; X. G. Liang, Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS Nano 2014, 8, 5270-5281.
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 April 2020
Revised: 22 May 2020
Accepted: 05 June 2020
Published: 10 July 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors acknowledge the financial support from Natural Science Foundation of Jiangsu Province (No. BK20170005), the National Natural Science Foundation of China (No. 21872100), Singapore MOE Grants MOE2019-T2-1-002 and R143-000- A43-114, Fundamental Research Foundation of Shenzhen (Nos. JCYJ20190808152607389 and JCYJ20170817100405375), and Shenzhen Peacock Plan (No. KQTD2016053112042971).

Return