Journal Home > Volume 14 , Issue 6

Two-dimensional (2D) materials have attracted great attention in optoelectronics because of their unique structure, optical and electrical properties. Designing high-performance photodetectors and implementing their applications are eager to promote the development of 2D materials. Position-sensitive detector (PSD) is an optical inspection device for the precise measurements of position, distance, angle, and other relevant physical variables. It is a widely used component in the fields of tracking, aerospace, nanorobotics, and so forth. Essentially, PSD is also a photodetector based on the lateral photovoltaic effect (LPE). This article reviews recent progress in high-performance PSD based on 2D materials. The high-sensitive photodetectors and LPE involved in 2D photodetectors are firstly discussed. Then, we introduce the research progress of PSD based on 2D materials and analyze the carrier dynamics in different device structures. Finally, we summarize the functionalities and applications of PSD based on 2D materials, and highlight the challenges and opportunities in this research area.


menu
Abstract
Full text
Outline
About this article

Position-sensitive detectors based on two-dimensional materials

Show Author's information Wenhui WangJunpeng Lu( )Zhenhua Ni( )
School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China

Abstract

Two-dimensional (2D) materials have attracted great attention in optoelectronics because of their unique structure, optical and electrical properties. Designing high-performance photodetectors and implementing their applications are eager to promote the development of 2D materials. Position-sensitive detector (PSD) is an optical inspection device for the precise measurements of position, distance, angle, and other relevant physical variables. It is a widely used component in the fields of tracking, aerospace, nanorobotics, and so forth. Essentially, PSD is also a photodetector based on the lateral photovoltaic effect (LPE). This article reviews recent progress in high-performance PSD based on 2D materials. The high-sensitive photodetectors and LPE involved in 2D photodetectors are firstly discussed. Then, we introduce the research progress of PSD based on 2D materials and analyze the carrier dynamics in different device structures. Finally, we summarize the functionalities and applications of PSD based on 2D materials, and highlight the challenges and opportunities in this research area.

Keywords: two-dimensional (2D) materials, graphene, heterojunction, photodetector, lateral photovoltaic effect, position-sensitive detector

References(113)

[1]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[2]
H. Wang,; L. L. Yu,; Y. H. Lee,; Y. M. Shi,; A. Hsu,; M. L. Chin,; L. J. Li,; M. Dubey,; J. Kong,; T. Palacios, Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674-4680.
[3]
Q. H. Wang,; K. Kalantar-Zadeh,; A. Kis,; J. N. Coleman,; M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[4]
M. Buscema,; D. J. Groenendijk,; S. I. Blanter,; G. A. Steele,; H. S. J. van der Zant,; A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347-3352.
[5]
A. K. Geim,; K. S. Novoselov, The rise of graphene. Nat. Mater. 2007, 6, 183-191.
[6]
K. F. Mak,; J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216-226.
[7]
K. J. Tielrooij,; L. Piatkowski,; M. Massicotte,; A. Woessner,; Q. Ma,; Y. Lee,; K. S. Myhro,; C. N. Lau,; P. Jarillo-Herrero,; N. F. van Hulst, et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 2015, 10, 437-443.
[8]
F. N. Xia,; T. Mueller,; Y. M. Lin,; A. Valdes-Garcia,; P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839-843.
[9]
K. Roy,; M. Padmanabhan,; S. Goswami,; T. P. Sai,; G. Ramalingam,; S. Raghavan,; A. Ghosh, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826-830.
[10]
Y. Z. Zhang,; T. Liu,; B. Meng,; X. H. Li,; G. Z. Liang,; X. N. Hu,; Q. J. Wang, Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 2013, 4, 1811.
[11]
C. H. Liu,; Y. C. Chang,; T. B. Norris,; Z. H. Zhong, Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 2014, 9, 273-278.
[12]
C. R. Dean,; A. F. Young,; I. Meric,; C. Lee,; L. Wang,; S. Sorgenfrei,; K. Watanabe,; T. Taniguchi,; P. Kim,; K. L. Shepard, et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.
[13]
S. V. Morozov,; K. S. Novoselov,; M. I. Katsnelson,; F. Schedin,; D. C. Elias,; J. A. Jaszczak,; A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.
[14]
H. Y. Chen,; H. Liu,; Z. M. Zhang,; K. Hu,; X. S. Fang, Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403-433.
[15]
Y. B. Zhang,; Y. W. Tan,; H. L. Stormer,; P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201-204.
[16]
J. M. Dawlaty,; S. Shivaraman,; M. Chandrashekhar,; F. Rana,; M. G. Spencer, Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett. 2008, 92, 042116.
[17]
A. N. Grigorenko,; M. Polini,; K. S. Novoselov, Graphene plasmonics. Nat. Photonics 2012, 6, 749-758.
[18]
M. Breusing,; S. Kuehn,; T. Winzer,; E. Malić,; F. Milde,; N. Severin,; J. P. Rabe,; C. Ropers,; A. Knorr,; T. Elsaesser, Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B 2011, 83, 153410.
[19]
P. A. George,; J. Strait,; J. Dawlaty,; S. Shivaraman,; M. Chandrashekhar,; F. Rana,; M. G. Spencer, Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 2008, 8, 4248-4251.
[20]
A. K. Geim, Graphene: Status and prospects. Science 2009, 324, 1530-1534.
[21]
J. L. Wang,; H. H. Fang,; X. D. Wang,; X. S. Chen,; W. Lu,; W. D. Hu, Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 2017, 13, 1700894.
[22]
T. Mueller,; F. N. Xia,; P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297-301.
[23]
X. T. Gan,; R. Shiue,; Y. D. Gao,; I. Meric,; T. F. Heinz,; K. Shepard,; J. Hone,; S. Assefa,; D. Englund, Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883-887.
[24]
M. Furchi,; A. Urich,; A. Pospischil,; G. Lilley,; K. Unterrainer,; H. Detz,; P. Klang,; A. M. Andrews,; W. Schrenk,; G. Strasser, et al. Microcavity-integrated graphene photodetector. Nano Lett. 2012, 12, 2773-2777.
[25]
G. Konstantatos,; M. Badioli,; L. Gaudreau,; J. Osmond,; M. Bernechea,; F. P. G. de Arquer,; F. Gatti,; F. H. L. Koppens, Hybrid graphene- quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363-368.
[26]
M. Freitag,; T. Low,; W. J. Zhu,; H. G. Yan,; F. N. Xia,; P. Avouris, Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 2013, 4, 1951.
[27]
Z. Y. Fang,; Z. Liu,; Y. M. Wang,; P. M. Ajayan,; P. Nordlander,; N. J. Halas, Graphene-antenna sandwich photodetector. Nano Lett. 2012, 12, 3808-3813.
[28]
W. J. Yu,; Y. Liu,; H. L. Zhou,; A. X. Yin,; Z. Li,; Y. Huang,; X. F. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952-958.
[29]
A. Y. Gao,; J. W. Lai,; Y. J. Wang,; Z. Zhu,; J. W. Zeng,; G. L. Yu,; N. Z. Wang,; W. C. Chen,; T. J. Cao,; W. D. Hu, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217-222.
[30]
X. H. An,; F. Z. Liu,; Y. J. Jung,; S. Kar, Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909-916.
[31]
X. T. Guo,; W. H. Wang,; H. Y. Nan,; Y. F. Yu,; J. Jiang,; W. W. Zhao,; J. H. Li,; Z. Zafar,; N. Xiang,; Z. H. Ni, et al. High-performance graphene photodetector using interfacial gating. Optica 2016, 3, 1066-1070.
[32]
J. Z. Fang,; Z. Q. Zhou,; M. Q. Xiao,; Z. Lou,; Z. M. Wei,; G. Z. Shen, Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. InfoMat 2020, 2, 291-317.
[33]
G. Lucovsky, Photoeffects in nonuniformly irradiated p-n junctions. J. Appl. Phys. 1960, 31, 1088-1095.
[34]
B. F. Levine,; R. H. Willens,; C. G. Bethea,; D. Brasen, Lateral photoeffect in thin amorphous superlattice films of Si and Ti grown on a Si substrate. Appl. Phys. Lett. 1986, 49, 1537-1539.
[35]
S. Qiao,; Y. N. Liu,; J. H. Liu,; J. H. Chen,; S. F. Wang,; G. S. Fu, The reverse lateral photovoltaic effect in boron-diffused Si p-n junction structure. IEEE Electr. Device Lett. 2016, 37, 201-204.
[36]
R. Martins,; E. Fortunato, Lateral photoeffect in large area one- dimensional thin-film position-sensitive detectors based in a-Si:H P-I-N devices. Rev. Sci. Instrum. 1995, 66, 2927-2934.
[37]
J. Henry,; J. Livingstone, Optimizing the wavelength response in one- dimensional p-Si Schottky barrier optical PSDs. Phys. Status Solidi A 2011, 208, 1718-1725.
[38]
C. Q. Yu,; H. Wang, Large lateral photovoltaic effect in metal- (oxide-)semiconductor structures. Sensors 2010, 10, 10155-10180.
[39]
Y. Liu,; N. O. Weiss,; X. D. Duan,; H. C. Cheng,; Y. Huang,; X. F. Duan, Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.
[40]
W. H. Wang,; R. X. Du,; X. T. Guo,; J. Jiang,; W. W. Zhao,; Z. H. Ni,; X. R. Wang,; Y. M. You,; Z. H. Ni, Interfacial amplification for graphene-based position-sensitive-detectors. Light: Sci. Appl. 2017, 6, e17113.
[41]
K. Y. Liu,; W. H. Wang,; Y. F. Yu,; X. Y. Hou,; Y. P. Liu,; W. Chen,; X. M. Wang,; J. P. Lu,; Z. H. Ni, Graphene-based infrared position- sensitive detector for precise measurements and high-speed trajectory tracking. Nano Lett. 2019, 19, 8132-8137.
[42]
L. Z. Hao,; Y. J. Liu,; Z. D. Han,; Z. J. Xu,; J. Zhu, Large lateral photovoltaic effect in MoS2/GaAs heterojunction. Nanoscale Res. Lett. 2017, 12, 562.
[43]
M. S. Long,; P. Wang,; H. H. Fang,; W. D. Hu, Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.
[44]
R. Mas-Ballesté,; C. Gsmez-Navarro,; J. Gamez-Herrero,; F. Zamora, 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20-30.
[45]
H. H. Fang,; W. D. Hu, Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.
[46]
E. F. Liu,; M. S. Long,; J. W. Zeng,; W. Luo,; Y. J. Wang,; Y. M. Pan,; W. Zhou,; B. G. Wang,; W. D. Hu,; Z. H. Ni, et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv. Funct. Mater. 2016, 26, 1938-1944.
[47]
J. Shim,; A. Oh,; D. H. Kang,; S. Oh,; S. K. Jang,; J. Jeon,; M. H. Jeon,; M. Kim,; C. Choi,; J. Lee, et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 2016, 28, 6985-6992.
[48]
J. Jiang,; C. Y. Ling,; T. Xu,; W. H. Wang,; X. H. Niu,; A. Zafar,; Z. Z. Yan,; X. M. Wang,; Y. M. You,; L. T. Sun, et al. Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater. 2018, 30, 1804332.
[49]
J. Wu,; G. K. W. Koon,; D. Xiang,; C. Han,; C. T. Toh,; E. S. Kulkarni,; I. Verzhbitskiy,; A. Carvalho,; A. S. Rodin,; S. P. Koenig, et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano 2015, 9, 8070-8077.
[50]
L. B. Liang,; J. Wang,; W. Z. Lin,; B. G. Sumpter,; V. Meunier,; M. H. Pan, Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett. 2014, 14, 6400-6406.
[51]
F. Z. Liu,; S. Kar, Quantum carrier reinvestment-induced ultrahigh and broadband photocurrent responses in graphene-silicon junctions. ACS Nano 2014, 8, 10270-10279.
[52]
X. M. Li,; M. Zhu,; M. D. Du,; Z. Lv,; L. Zhang,; Y. C. Li,; Y. Yang,; T. T. Yang,; X. Li,; K. L. Wang, et al. High detectivity graphene- silicon heterojunction photodetector. Small 2016, 12, 595-601.
[53]
X. M. Li,; H. W. Zhu,; K. L. Wang,; A. Y. Cao,; J. Q. Wei,; C. Y. Li,; Y. Jia,; Z. Li,; X. Li,; D. H. Wu, Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 2010, 22, 2743-2748.
[54]
M. L. Tsai,; S. H. Su,; J. K. Chang,; D. S. Tsai,; C. H. Chen,; C. I. Wu,; L. J. Li,; L. J. Chen,; J. H. He, Monolayer MoS2 heterojunction solar cells. ACS Nano 2014, 8, 8317-8322.
[55]
Y. Ye,; Z. L. Ye,; M. Gharghi,; H. Y. Zhu,; M. Zhao,; Y. Wang,; X. B. Yin,; X. Zhang, Exciton-dominant electroluminescence from a diode of monolayer MoS2. Appl. Phys. Lett. 2014, 104, 193508.
[56]
L. H. Zeng,; M. Z. Wang,; H. Hu,; B. Nie,; Y. Q. Yu,; C. Y. Wu,; L. Wang,; J. G. Hu,; C. Xie,; F. X. Liang, et al. Monolayer graphene/ germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 2013, 5, 9362-9366.
[57]
Y. Song,; X. M. Li,; C. Mackin,; X. Zhang,; W. J. Fang,; T. Palacios,; H. W. Zhu,; J. Kong, Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. Nano Lett. 2015, 15, 2104-2110.
[58]
S. Goossens,; G. Navickaite,; C. Monasterio,; S. Gupta,; J. J. Piqueras,; R. Pérez,; G. Burwell,; I. Nikitskiy,; T. Lasanta,; T. Galán, et al. Broadband image sensor array based on graphenee-silicon photodr. Nat. Photonics 2017, 11, 366-371.
[59]
K. Zhang,; X. Fang,; Y. L. Wang,; Y. Wan,; Q. J. Song,; W. H. Zhai,; Y. P. Li,; G. Z. Ran,; Y. Ye,; L. Dai, Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der waals heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 5392-5398.
[60]
L. Britnell,; R. M. Ribeiro,; A. Eckmann,; R. Jalil,; B. D. Belle,; A. Mishchenko,; Y. J. Kim,; R. V. Gorbachev,; T. Georgiou,; S. V. Morozov, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311-1314.
[61]
M. Massicotte,; P. Schmidt,; F. Vialla,; K. G. Schädler,; A. Reserbat- Plantey,; K. Watanabe,; T. Taniguchi,; K. J. Tielrooij,; F. H. L. Koppens, Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42-46.
[62]
Q. A. Vu,; J. H. Lee,; V. L. Nguyen,; Y. S. Shin,; S. C. Lim,; K. Lee,; J. Heo,; S. Park,; K. Kim,; Y. H. Lee, et al. Tuning carrier tunneling in van der waals heterostructures for ultrahigh detectivity. Nano Lett. 2017, 17, 453-459.
[63]
M. S. Long,; E. F. Liu,; P. Wang,; A. Y. Gao,; H. Xia,; W. Luo,; B. G. Wang,; J. W. Zeng,; Y. J. Fu,; K. Xu, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 2016, 16, 2254-2259.
[64]
A. L. Li,; Q. X. Chen,; P. P. Wang,; Y. Gan,; T. L. Qi,; P. Wang,; F. D. Tang,; J. Z. Wu,; R. Chen,; L. Y. Zhang, et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/graphene/ SnS2 p-g-n junctions. Adv. Mater. 2018, 31, 1805656.
[65]
M. Q. Huang,; M. L. Wang,; C. Chen,; Z. W. Ma,; X. F. Li,; J. B. Han,; Y. Q. Wu, Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 2016, 28, 3481-3485.
[66]
W. J. Zhang,; M. H. Chiu,; C. H. Chen,; W. Chen,; L. J. Li,; A. T. S. Wee, Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653-8661.
[67]
C. H. Lee,; G. H. Lee,; A. M. van der Zande,; W. C. Chen,; Y. L. Li,; M. Y. Han,; X. Cui,; G. Arefe,; C. Nuckolls,; T. F. Heinz, et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676-681.
[68]
Q. Lu,; L. Yu,; Y. Liu,; J. C. Zhang,; G. Q. Han,; Y. Hao, Low-noise mid-infrared photodetection in BP/h-BN/graphene van der Waals heterojunctions. Materials 2019, 12, 2532.
[69]
T. Yu,; F. Wang,; Y. Xu,; L. L. Ma,; X. D. Pi,; D. R. Yang, Graphene coupled with silicon quantum dots for high-performance bulk- silicon-based Schottky-junction photodetectors. Adv. Mater. 2016, 28, 4912-4919.
[70]
M. Akatsuka,; K. Sueoka, Pinning effect of punched-out dislocations in carbon-, nitrogen- or boron-doped silicon wafers. Jpn. J. Appl. Phys. 2001, 40, 1240-1241.
[71]
X. Huang,; C. L. Mei,; Z. K. Gan,; P. Q. Zhou,; H. Wang, Lateral photovoltaic effect in p-type silicon induced by surface states. Appl. Phys. Lett. 2017, 110, 121103.
[72]
B. K. Sarker,; E. Cazalas,; T. F. Chung,; I. Childres,; I. Jovanovic,; Y. P. Chen, Position-dependent and millimetre-range photodetection in phototransistors with micrometre-scale graphene on SiC. Nat. Nanotechnol. 2017, 12, 668-674.
[73]
E. Fortunato,; G. Lavareda,; R. Martins,; F. Soares,; L. Fernandes, Large-area 1D thin-film position-sensitive detector with high detection resolution. Sens. Actuators A: Phys. 1996, 51, 135-142.
[74]
J. Henry,; J. Livingstone, Thin-film amorphous silicon position- sensitive detectors. Adv. Mater. 2001, 13, 1023-1026.
[75]
Z. Yan,; J. Lin,; Z. W. Peng,; Z. Z. Sun,; Y. Zhu,; L. Li,; C. S. Xiang,; E. L. Samuel,; C. Kittrell,; J. M. Tour, Toward the synthesis of wafer- scale single-crystal graphene on copper foils. ACS Nano 2012, 6, 9110-9117.
[76]
L. B. Gao,; G. X. Ni,; Y. P. Liu,; B. Liu,; A. H. Castro Neto,; K. P. Loh, Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190-194.
[77]
X. Z. Xu,; Z. H. Zhang,; J. C. Dong,; D. Yi,; J. J. Niu,; M. H. Wu,; L. Lin,; R. K. Yin,; M. Q. Li,; J. Y. Zhou, et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074-1080.
[78]
W. H. Wang,; Z. Z. Yan,; J. F. Zhang,; J. P. Lu,; H. Qin,; Z. H. Ni, High-performance position-sensitive detector based on graphene- silicon heterojunction. Optica 2018, 5, 27-31.
[79]
W. H. Wang,; K. Y. Liu,; J. Jiang,; R. X. Du,; L. T. Sun,; W. Chen,; J. P. Lu,; Z. H. Ni, Ultrasensitive graphene-Si position-sensitive detector for motion tracking. InfoMat 2020, 2, 761-768.
[80]
D. S. Tsai,; K. K. Liu,; D. H. Lien,; M. L. Tsai,; C. F. Kang,; C. A. Lin,; L. J. Li,; J. H. He, Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905-3911.
[81]
G. Eda,; S. A. Maier, Two-dimensional crystals: Managing light for optoelectronics. ACS Nano 2013, 7, 5660-5665.
[82]
K. F. Mak,; C. Lee,; J. Hone,; J. Shan,; T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[83]
D. S. Kong,; H. T. Wang,; J. J. Cha,; M. Pasta,; K. J. Koski,; J. Yao,; Y. Cui, Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341-1347.
[84]
S. Y. Cho,; S. J. Kim,; Y. Lee,; J. S. Kim,; W. B. Jung,; H. W. Yoo,; J. Kim,; H. T. Jung, Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano 2015, 9, 9314-9321.
[85]
M. A. Kang,; S. K. Kim,; J. K. Han,; S. J. Kim,; S. J. Chang,; C. Y. Park,; S. Myung,; W. Song,; S. S. Lee,; J. Lim, et al. Large scale growth of vertically standing MoS2 flakes on 2D nanosheet using organic promoter. 2D Mater. 2017, 4, 025042.
[86]
Y. T. Ho,; C. H. Ma,; T. T. Luong,; L. L. Wei,; T. C. Yen,; W. T. Hsu,; W. H. Chang,; Y. C. Chu,; Y. Y. Tu,; K. P. Pande, et al. Layered MoS2 grown on c-sapphire by pulsed laser deposition. Phys. Status Solidi Rapid Res. Lett. 2015, 9, 187-191.
[87]
N. Choudhary,; J. Park,; J. Y. Hwang,; W. Choi, Growth of large- scale and thickness-modulated MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 21215-21222.
[88]
M. I. Serna,; S. H. Yoo,; S. Moreno,; Y. Xi,; J. P. Oviedo,; H. Choi,; H. N. Alshareef,; M. J. Kim,; M. Minary-Jolandan,; M. A. Quevedo-Lopez, Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control. ACS Nano 2016, 10, 6054-6061.
[89]
L. Wang,; J. S. Jie,; Z. B. Shao,; Q. Zhang,; X. H. Zhang,; Y. M. Wang,; Z. Sun,; S. T. Lee, MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible- near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910-2919.
[90]
R. D. Cong,; S. Qiao,; J. H. Liu,; J. S. Mi,; W. Yu,; B. L. Liang,; G. S. Fu,; C. F. Pan,; S. F. Wang, Ultrahigh, ultrafast, and self-powered visible-near-infrared optical position-sensitive detector based on a CVD-prepared vertically standing few-layer MoS2/Si heterojunction. Adv. Sci. 2018, 5, 1700502.
[91]
L. Z. Hao,; Y. J. Liu,; Z. D. Han,; Z. J. Xu,; J. Zhu, Giant lateral photovoltaic effect in MoS2/SiO2/Si p-i-n junction. J. Alloys Compd. 2018, 735, 88-97.
[92]
S. Qiao,; J. H. Liu,; G. S. Fu,; S. F. Wang,; K. L. Ren,; C. F. Pan, Laser-induced photoresistance effect in Si-based vertical standing MoS2 nanoplate heterojunctions for self-powered high performance broadband photodetection. J. Mater. Chem. C 2019, 7, 10642-10651.
[93]
X. F. Zhao,; L. R. Zhang,; Q. Y. Gai,; C. Hu,; X. J. Wang, High- performance position-sensitive detector based on the lateral photovoltaic effect in MoSe2/p-Si junctions. Appl. Opt. 2019, 58, 5200-5205.
[94]
C. Hu,; X. J. Wang,; P. Miao,; L. L. Zhang,; B. Q. Song,; W. L. Liu,; Z. Lv,; Y. Zhang,; Y. Sui,; J. K. Tang, et al. Origin of the ultrafast response of the lateral photovoltaic effect in amorphous MoS2/Si junctions. ACS Appl. Mater. Interfaces 2017, 9, 18362-18368.
[95]
H. X. Chang,; Z. H. Sun,; Q. H. Yuan,; F. Ding,; X. M. Tao,; F. Yan,; Z. J. Zheng, Thin film field-effect phototransistors from bandgap- tunable, solution-processed, few-layer reduced graphene oxide films. Adv. Mater. 2010, 22, 4872-4876.
[96]
L. Guo,; R. Q. Shao,; Y. L. Zhang,; H. B. Jiang,; X. B. Li,; S. Y. Xie,; B. B. Xu,; Q. D. Chen,; J. F. Song,; H. B. Sun, Bandgap tailoring and synchronous microdevices patterning of graphene oxides. J. Phys. Chem. C 2012, 116, 3594-3599.
[97]
D. Alsaedi,; M. Irannejad,; K. H. Ibrahim,; A. Almutairi,; O. Ramahi,; M. Yavuz, High-responsivity reduced graphene oxide gel photodetectors for visible-light detection with a large detection area and an end- contact interface. J. Mater. Chem. C 2017, 5, 882-888.
[98]
Y. Cao,; H. Yang,; Y. J. Zhao,; Y. Zhang,; T. T. Ren,; B. B. Jin,; J. H. He,; J. L. Sun, Fully suspended reduced graphene oxide photodetector with annealing temperature-dependent broad spectral binary photoresponses. ACS Photonics 2017, 4, 2797-2806.
[99]
B. Chitara,; L. S. Panchakarla,; S. B. Krupanidhi,; C. N. R. Rao, Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 2011, 23, 5419-5424.
[100]
G. H. Li,; L. Liu,; G. Wu,; W. Chen,; S. J. Qin,; Y. Wang,; T. Zhang, Self-powered UV-near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction. Small 2016, 12, 5019-5026.
[101]
S. Ghosh,; B. K. Sarker,; A. Chunder,; L. Zhai,; S. I. Khondaker, Position dependent photodetector from large area reduced graphene oxide thin films. Appl. Phys. Lett. 2010, 96, 163109.
[102]
R. Feng,; L. G. Hu,; Y. W. Zhang,; M. Zaheer,; Z. J. Qiu,; C. X. Cong,; Q. M. Nie,; Y. J. Qin,; R. Liu, Direct laser writing of vertical junctions in graphene oxide films for broad spectral position- sensitive detectors. Nanophotonics 2018, 7, 1563-1570.
[103]
P. V. Kumar,; M. Bernardi,; J. C. Grossman, The impact of functionalization on the stability, work function, and photoluminescence of reduced graphene oxide. ACS Nano 2013, 7, 1638-1645.
[104]
I. K. Moon,; B. Ki,; S. Yoon,; J. Choi,; J. Oh, Lateral photovoltaic effect in flexible free-standing reduced graphene oxide film for self-powered position-sensitive detection. Sci. Rep. 2016, 6, 33525.
[105]
S. Qiao,; B. Zhang,; K. Y. Feng,; R. D. Cong,; W. Yu,; G. S. Fu,; S. F. Wang, Large lateral photovoltage observed in MoS2 thickness- modulated ITO/MoS2/p-Si heterojunctions. ACS Appl. Mater. Interfaces 2017, 9, 18377-18387.
[106]
M. Javadi,; M. Gholami,; Y. Abdi, IR position-sensitive detectors based on double-junction asymmetric TiO2/MoS2/reduced graphene- oxide sandwiches. J. Mater. Chem. C 2018, 6, 8444-8452.
[107]
X. J. Wang,; X. F. Zhao,; C. Hu,; Y. Zhang,; B. Q. Song,; L. L. Zhang,; W. L. Liu,; Z. Lv,; Y. Zhang,; J. K. Tang, et al. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction. Appl. Phys. Lett. 2016, 109, 023502.
[108]
L. Z. Hao,; H. Y. Xu,; S. C. Dong,; Y. J. Du,; L. Luo,; C. Y. Zhang,; H. Liu,; Y. P. Wu,; Y. J. Liu, SnSe/SiO2/Si heterostructures for ultrahigh-sensitivity and broadband optical position sensitive detectors. IEEE Electr. Device Lett. 2019, 40, 55-58.
[109]
Y. Zhang,; Y. Zhang,; T. Yao,; C. Hu,; Y. Sui,; X. J. Wang, Ultrahigh position sensitivity and fast optical relaxation time of lateral photovoltaic effect in Sb2Se3/p-Si junctions. Opt. Express 2018, 26, 34214-34223.
[110]
C. Ge,; K. J. Jin,; H. B. Lu,; C. Wang,; G. M. Zhao,; L. L. Zhang,; G. Z. Yang, Mechanisms for the enhancement of the lateral photovoltage in perovskite heterostructures. Solid State Commun. 2010, 150, 2114-2117.
[111]
A. Z. Ashar,; N. Ganesh,; K. S. Narayan, Hybrid perovskite-based position-sensitive detectors. Adv. Electron. Mater. 2018, 4, 1700362.
[112]
M. Javadi,; M. Gholami,; H. Torbatiyan,; Y. Abdi, Hybrid organic/ inorganic position-sensitive detectors based on PEDOT:PSS/n-Si. Appl. Phys. Lett. 2018, 112, 113302.
[113]
J. Y. Lin,; Y. C. Liao, Small-angle measurement with highly sensitive total-internal-reflection heterodyne interferometer. Appl. Opt. 2014, 53, 1903-1908.
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 March 2020
Revised: 24 May 2020
Accepted: 05 June 2020
Published: 30 June 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 61927808, 61774034, and 11704068), the National Key Research and Development Program of China (No. 2017YFA0205700), China Postdoctoral Science Foundation (No. 2018M632197).

Return