Journal Home > Volume 13 , Issue 10

Inkjet printing of two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets fabricated by liquid-phase exfoliation (LPE) allows simple, mass-producible, and low-cost photo-electronic devices. Many LPE processes involve toxic and environmentally hazardous solvents; however, dispersants have restricted the extent of applications of 2D-TMD inks. Herein, various 2D-TMD nanosheets, including MoS2, MoSe2, WS2, and WSe2, in addition to few-layered graphene, are inkjet-printed using a LPE process based on zwitterionic dispersants in water. Zwitterions with cationic and anionic species are water-soluble, while alkyl chain moieties associated with two ionic species adhere universally on the surface of TMD nanosheets, resulting in high throughput liquid exfoliation of the nanosheets. The zwitterion-assisted TMD nanosheets in water are successfully employed as an ink without the need for additives to adjust the viscosity and surface tension of the ink for use in an office inkjet printer; this gives rise to A4 scale, large-area inkjet-printed images on diverse substrates, such as metals, oxides, and polymer substrates patchable onto human skin. Combination with conductive graphene nanosheet inks allowed the development of mechanically flexible, biocompatible-printed arrays of photodetectors with pixelated MoSe2 channels on a paper exhibiting a photocurrent ON/OFF ratio of approximately 103.8 and photocurrent switching of 500 ms.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Zwitterion-assisted transition metal dichalcogenide nanosheets for scalable and biocompatible inkjet printing

Show Author's information Hyeokjung Lee1Min Koo1Chanho Park1Madhumita Patel2Hyowon Han1Tae Hyun Park1Pawan Kumar1Won-Gun Koh2Cheolmin Park1( )
Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea

Abstract

Inkjet printing of two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets fabricated by liquid-phase exfoliation (LPE) allows simple, mass-producible, and low-cost photo-electronic devices. Many LPE processes involve toxic and environmentally hazardous solvents; however, dispersants have restricted the extent of applications of 2D-TMD inks. Herein, various 2D-TMD nanosheets, including MoS2, MoSe2, WS2, and WSe2, in addition to few-layered graphene, are inkjet-printed using a LPE process based on zwitterionic dispersants in water. Zwitterions with cationic and anionic species are water-soluble, while alkyl chain moieties associated with two ionic species adhere universally on the surface of TMD nanosheets, resulting in high throughput liquid exfoliation of the nanosheets. The zwitterion-assisted TMD nanosheets in water are successfully employed as an ink without the need for additives to adjust the viscosity and surface tension of the ink for use in an office inkjet printer; this gives rise to A4 scale, large-area inkjet-printed images on diverse substrates, such as metals, oxides, and polymer substrates patchable onto human skin. Combination with conductive graphene nanosheet inks allowed the development of mechanically flexible, biocompatible-printed arrays of photodetectors with pixelated MoSe2 channels on a paper exhibiting a photocurrent ON/OFF ratio of approximately 103.8 and photocurrent switching of 500 ms.

Keywords: biocompatible, transition metal dichalcogenide nanosheets, zwitterions, zwitterion-assisted liquid-phase exfoliation, scalable inkjet printing

References(48)

[1]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[2]
Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J. et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832-5836.
[3]
Jin, H. R.; Hu, Z. M.; Li, T. Q.; Huang, L.; Wan, J.; Xue, G. B.; Zhou, J. Mass production of high-quality transition metal dichalcogenides nanosheets via a molten salt method. Adv. Funct. Mater. 2019, 29, 1900649.
[4]
Chia, X.; Ambrosi, A.; Sofer, Z.; Luxa, J.; Pumera, M. Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano 2015, 9, 5164-5179.
[5]
Pereira, A. O.; Miranda, C. R. First-principles investigation of transition metal dichalcogenide nanotubes for Li and Mg ion battery applications. J. Phys. Chem. C 2015, 119, 4302-4311.
[6]
Tsai, M. L.; Su, S. H.; Chang, J. K.; Tsai, D. S.; Chen, C. H.; Wu, C. I.; Li, L. J.; Chen, L. J.; He, J. H. Monolayer MoS2 heterojunction solar cells. ACS Nano 2014, 8, 8317-8322.
[7]
Sarkar, D.; Xie, X. J.; Kang, J. H.; Zhang, H. J.; Liu, W.; Navarrete, J.; Moskovits, M.; Banerjee, K. Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing. Nano Lett. 2015, 15, 2852-2862.
[8]
Nguyen, V. T.; Yang, T. Y.; Le, P. A.; Yen, P. J.; Chueh, Y. L.; Wei, K. H. New simultaneous exfoliation and doping process for generating MX2 nanosheets for electrocatalytic hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 14786-14795.
[9]
Yang, H. G.; Xue, T. Y.; Li, F. Y.; Liu, W. T.; Song, Y. L. Graphene: Diversified flexible 2D material for wearable vital signs monitoring. Adv. Mater. Technol. 2019, 4, 1800574.
[10]
Yi, F.; Ren, H. Y.; Shan, J. Y.; Sun, X.; Wei, D.; Liu, Z. F. Wearable energy sources based on 2D materials. Chem. Soc. Rev. 2018, 47, 3152-3188.
[11]
Li, J. T.; Naiini, M. M.; Vaziri, S.; Lemme, M. C.; Östling, M. Inkjet printing of MoS2. Adv. Funct. Mater. 2014, 24, 6524-6531.
[12]
Withers, F.; Yang, H.; Britnell, L.; Rooney, A. P.; Lewis, E.; Felten, A.; Woods, C. R.; Romaguera, V. S.; Georgiou, T.; Eckmann, A. et al. Heterostructures produced from nanosheet-based inks. Nano Lett. 2014, 14, 3987-3992.
[13]
McManus, D.; Vranic, S.; Withers, F.; Sanchez-Romaguera, V.; Macucci, M.; Yang, H. F.; Sorrentino, R.; Parvez, K.; Son, S. K.; Iannaccone, G. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 2017, 12, 343-350.
[14]
Carey, T.; Cacovich, S.; Divitini, G.; Ren, J. S.; Mansouri, A.; Kim, J. M.; Wang, C. X.; Ducati, C.; Sordan, R.; Torrisi, F. Fully inkjet- printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 2017, 8, 1202.
[15]
Hossain, R. F.; Deaguero, I. G.; Boland, T.; Kaul, A. B. Biocompatible, large-format, inkjet printed heterostructure MoS2-graphene photodetectors on conformable substrates. npj 2D Mater. Appl. 2017, 1, 28.
[16]
Seo, J. W. T.; Zhu, J.; Sangwan, V. K.; Secor, E. B.; Wallace, S. G.; Hersam, M. C. Fully inkjet-printed, mechanically flexible MoS2 nanosheet photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 5675-5681.
[17]
Kedawat, G.; Kumar, P.; Nagpal, K.; Paul, S. J.; Singh, V. N.; Kumar, S. S.; Gupta, B. K. New insights into the triton X-100 induced chemical exfoliation of MoS2 to derive highly luminescent nanosheets. ChemistrySelect 2019, 4, 6219-6226.
[18]
Guardia, L.; Paredes, J. I.; Rozada, R.; Villar-Rodil, S.; Martínez- Alonso, A.; Tascón, J. M. D. Production of aqueous dispersions of inorganic graphene analogues by exfoliation and stabilization with non-ionic surfactants. RSC Adv. 2014, 4, 14115-14127.
[19]
Wang, X. W.; Wu, P. Y. Aqueous phase exfoliation of two-dimensional materials assisted by thermoresponsive polymeric ionic liquid and their applications in stimuli-responsive hydrogels and highly thermally conductive films. ACS Appl. Mater. Interfaces 2018, 10, 2504-2514.
[20]
Sarkar, A. S.; Pal, S. K. A van der Waals p-n heterojunction based on polymer-2D layered MoS2 for solution processable electronics. J. Phys. Chem. C 2017, 121, 21945-21954.
[21]
Ayán-Varela, M.; Pérez-Vidal, Ó.; Paredes, J. I.; Munuera, J. M.; Villar-Rodil, S.; Díaz-González, M.; Fernández-Sánchez, C.; Silva, V. S.; Cicuéndez, M.; Vila, M. et al. Aqueous exfoliation of transition metal dichalcogenides assisted by DNA/RNA nucleotides: Catalytically active and biocompatible nanosheets stabilized by acid-base interactions. ACS Appl. Mater. Interfaces 2017, 9, 2835-2845.
[22]
Oh, N. K.; Lee, H. J.; Choi, K.; Seo, J.; Kim, U.; Lee, J.; Choi, Y.; Jung, S.; Lee, J. H.; Shin, H. S. et al. Nafion-mediated liquid-phase exfoliation of transition metal dichalcogenides and direct application in hydrogen evolution reaction. Chem. Mater. 2018, 30, 4658-4666.
[23]
Finn, D. J.; Lotya, M.; Cunningham, G.; Smith, R. J.; McCloskey, D.; Donegan, J. F.; Coleman, J. N. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2014, 2, 925-932.
[24]
Torrisi, F.; Hasan, T.; Wu, W. P.; Sun, Z. P.; Lombardo, A.; Kulmala, T. S.; Hsieh, G. W.; Jung, S.; Bonaccorso, F.; Paul, P. J. et al. Inkjet- printed graphene electronics. ACS Nano 2012, 6, 2992-3006.
[25]
Kim, O.; Kim, H.; Choi, U. H.; Park, M. J. One-volt-driven superfast polymer actuators based on single-ion conductors. Nat. Commun. 2016, 7, 13576.
[26]
Wang, Q.; Zheng, X. P.; Deng, Y. H.; Zhao, J. J.; Chen, Z. L.; Huang, J. S. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 2017, 1, 371-382.
[27]
Hernandez, Y.; Coleman, J. N.; Wang, Z.; King, P. J.; Duesberg, G. S.; Nicolosi, V.; Blighe, F. M.; De, S.; McGovern, I. T.; Karlsson, L. S. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611-3620.
[28]
Smith, R. J.; King, P. J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O’Neill, A.; Duesberg, G. S.; Grunlan, J. C.; Moriarty, G. et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 2011, 23, 3944-3948.
[29]
Gupta, A.; Arunachalam, V.; Vasudevan, S. Water dispersible, positively and negatively charged MoS2 nanosheets: Surface chemistry and the role of surfactant binding. J. Phys. Chem. Lett. 2015, 6, 739-744.
[30]
Velusamy, D. B.; Kim, R. H.; Cha, S.; Huh, J.; Khazaeinezhad, R.; Kassani, S. H.; Song, G. Y.; Cho, S. M.; Cho, S. H.; Hwang, I. et al. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun. 2015, 6, 8063.
[31]
Lee, J.; Kim, R. H.; Yu, S.; Velusamy, D. B.; Lee, H.; Park, C.; Cho, S. M.; Jeong, B.; Kang, H. S.; Park, C. Design of amine modified polymer dispersants for liquid-phase exfoliation of transition metal dichalcogenide nanosheets and their photodetective nanocomposites. 2D Mater. 2017, 4, 041002.
[32]
Mondini, S.; Leonzino, M.; Drago, C.; Ferretti, M. A.; Usseglio, S.; Maggioni, D.; Tornese, P.; Chini, B.; Ponti, A. Zwitterion-coated iron oxide nanoparticles: Surface chemistry and intracellular uptake by Hepatocarcinoma (HepG2) cells. Langmuir 2015, 31, 7381-7390.
[33]
Xia, J.; Huang, X.; Liu, L. Z.; Wang, M.; Wang, L.; Huang, B.; Zhu, D. D.; Li, J. J.; Gu, C. Z.; Meng, X. M. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 2014, 6, 8949-8955.
[34]
Gupta, U.; Naidu, B. S.; Maitra, U.; Singh, A.; Shirodkar, S. N.; Waghmare, U. V.; Rao, C. N. R. Characterization of few-layer 1T-MoSe2 and its superior performance in the visible-light induced hydrogen evolution reaction. APL Mater. 2014, 2, 092802.
[35]
Zhou, X. L.; Jiang, J.; Ding, T.; Zhang, J. J.; Pan, B. C.; Zuo, J.; Yang, Q. Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe2-x nanosheets for high-performance hydrogen evolution. Nanoscale 2014, 6, 11046-11051.
[36]
Haar, S.; Ciesielski, A.; Clough, J.; Yang, H. F.; Mazzaro, R.; Richard, F.; Conti, S.; Merstorf, N.; Cecchini, M.; Morandi, V. et al. A supramolecular strategy to leverage the liquid-phase exfoliation of graphene in the presence of surfactants: Unraveling the role of the length of fatty acids. Small 2015, 11, 1691-1702.
[37]
Zhai, S. Y.; Ma, Y. H.; Chen, Y. Y.; Li, D.; Cao, J.; Liu, Y. J.; Cai, M. T.; Xie, X. X.; Chen, Y. W.; Luo, X. L. Synthesis of an amphiphilic block copolymer containing zwitterionic sulfobetaine as a novel pH-sensitive drug carrier. Polym. Chem. 2014, 5, 1285-1297.
[38]
Yang, Z.; Saeki, D.; Matsuyama, H. Zwitterionic polymer modification of polyamide reverse-osmosis membranes via surface amination and atom transfer radical polymerization for anti-biofouling. J. Memb. Sci. 2018, 550, 332-339.
[39]
Jia, W.; Tang, B. B.; Wu, P. Y. Nafion-assisted exfoliation of MoS2 in water phase and the application in quick-response NIR light controllable multi-shape memory membrane. Nano Res. 2018, 11, 542-553.
[40]
Viana, R. B.; Da Silva, A. B. F.; Pimentel, A. S. Infrared spectroscopy of anionic, cationic, and zwitterionic surfactants. Adv. Phys. Chem. 2012, 2012, 903272.
[41]
Dong, N. N.; Li, Y. X.; Feng, Y. Y.; Zhang, S. F.; Zhang, X. Y.; Chang, C. X.; Fan, J. T.; Zhang, L.; Wang, J. Optical limiting and theoretical modelling of layered transition metal dichalcogenide nanosheets. Sci. Rep. 2015, 5, 14646.
[42]
Parvez, K.; Worsley, R.; Alieva, A.; Felten, A.; Casiraghi, C. Water-based and inkjet printable inks made by electrochemically exfoliated graphene. Carbon 2019, 149, 213-221.
[43]
Shim, W.; Kwon, Y.; Jeon, S. Y.; Yu, W. R. Optimally conductive networks in randomly dispersed CNT: Graphene hybrids. Sci. Rep. 2015, 5, 16568.
[44]
Park, J. A.; Yoon, S.; Kwon, J.; Now, H.; Kim, Y. K.; Kim, W. J.; Yoo, J. Y.; Jung, S. Freeform micropatterning of living cells into cell culture medium using direct inkjet printing. Sci. Rep. 2017, 7, 14610.
[45]
Zhan, H. A.; Löwik, D. W. P. M. A hybrid peptide amphiphile fiber PEG hydrogel matrix for 3D cell culture. Adv. Funct. Mater. 2019, 29, 1808505.
[46]
Hao, J. L.; Song, G. S.; Liu, T.; Yi, X.; Yang, K.; Cheng, L.; Liu, Z. In vivo long-term biodistribution, excretion, and toxicology of PEGylated transition-metal dichalcogenides MS2 (M = Mo, W, Ti) nanosheets. Adv. Sci. 2017, 4, 1600160.
[47]
Teo, W. Z.; Chng, E. L. K.; Sofer, Z.; Pumera, M. Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chem.—Eur. J. 2014, 20, 9627-9632.
[48]
Diaz-Diestra, D.; Beltran-Huarac, J.; Bracho-Rincon, D. P.; González- Feliciano, J. A.; González, C. I.; Weiner, B. R.; Morell, G. Biocompatible ZnS: Mn quantum dots for reactive oxygen generation and detection in aqueous media. J. Nanopart. Res. 2015, 17, 461.
File
12274_2020_2916_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 February 2020
Revised: 03 June 2020
Accepted: 05 June 2020
Published: 05 October 2020
Issue date: October 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This research was supported by the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2018M3D1A1058536). This research was also supported by a grant from the NRF funded by the Korean government (MEST) (Nos. 2017R1A2A1A05001160 and 2016M3A7B4910530). This work is based upon work supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea) under Industrial Technology Innovation Program (No.10063274).

Return