Journal Home > Volume 13 , Issue 10

Since most organic materials are very sensitive to moisture and oxygen, organic light emitting diodes (OLEDs) require an encapsulation layer to protect the active layer from these gases. Since light, flexible and portable OLEDs are being employed in more diverse climates and environmental conditions, the OLED encapsulation layer must retain robust mechanical properties and stability in high temperature/high humidity conditions. Al2O3 films have demonstrated excellent barrier performance, but they readily hydrolyze when exposed to prolonged harsh environments. In this study, we fabricated a thin film encapsulation (TFE) film that was resistant to hydrolysis, using Al2O3/MgO (AM) nanolaminates. MgO has superior resistance to harsh environments, and the aluminate phase generated by the chemical reaction of Al2O3 and MgO provided excellent barrier performance, even after storage in harsh conditions. A multi-barrier fabricated using the AM nanolaminate showed excellent barrier performance, close to the level required by OLEDs. It did not significantly deteriorate even after a bending test of 1,000 iterations at 0.63% strain. After 1,000 cycle of bending, the electrical properties of the passivated OLEDs were not significantly degraded at shelf-lifetime test where the fabricated device was stored for 50 days in a harsh environment of 60 °C, 90% relative humidity. The multi-barrier shows the best performance compared to previous studies on flexible encapsulation that can be used in harsh environments.

File
12274_2020_2915_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 March 2020
Revised: 02 June 2020
Accepted: 04 June 2020
Published: 05 October 2020
Issue date: October 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This research was supported by the Engineering Research Center of Excellence (ERC) Program supported by the National Research Foundation (NRF) of the Korean Ministry of Science, ICT & Future Planning (MSIP) (Grant No. NRF-2017R1A5A1014708). The authors express sincere gratitude to National NanoFab (NNFC) for the measurements. We also thank Prof. Byeong-Soo Bae from KAIST for help in synthesis of the polymers.

Return