Journal Home > Volume 13 , Issue 10

Insufficient intratumoral penetration greatly hurdles the anticancer performance of nanomedicine. To realize highly efficient tumor penetration in a precisely and spatiotemporally controlled manner, far-red light-responsive nanoclusters (NCs) capable of size shrinkage and charge conversion were developed and co-administered with iRGD to synergistically improve the intratumoral penetration and the anticancer efficacy. The NCs were constructed using the singlet oxygen-sensitive (SOS) polyethylene glycol- polyurethane-polyethylene glycol (PEG-(1O2)PU-PEG) triblock copolymer to encapsulate the doxorubicin (DOX)-loaded, chlorin e6 (Ce6)-conjugated polyamindoamine (PAMAM) dendrimer (DCD) via the double-emulsion method. Co-administration of iRGD notably increased the permeability of NCs within tumor vasculature and tumor tissues. In addition, upon far-red light irradiation (660 nm) of tumors at low optical density (10 mW/cm2), the generated 1O2 could disintegrate the NCs and release the DCD with positive surface charge and ultra-small size (~ 5 nm), which synergized with iRGD to enable deep intratumoral penetration. Consequently, the local 1O2 at lethal concentrations along with the released DOX efficiently and cooperatively eradicated tumor cells. This study provides a convenient approach to spatiotemporally promote the intratumoral penetration of nanomedicine and mediate programmed anticancer therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

iRGD-reinforced, photo-transformable nanoclusters toward cooperative enhancement of intratumoral penetration and antitumor efficacy

Show Author's information Jing Yan1Rongying Zhu2Fan Wu1Ziyin Zhao1Huan Ye1Mengying Hou1Yong Liu1( )Lichen Yin1( )
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China

Abstract

Insufficient intratumoral penetration greatly hurdles the anticancer performance of nanomedicine. To realize highly efficient tumor penetration in a precisely and spatiotemporally controlled manner, far-red light-responsive nanoclusters (NCs) capable of size shrinkage and charge conversion were developed and co-administered with iRGD to synergistically improve the intratumoral penetration and the anticancer efficacy. The NCs were constructed using the singlet oxygen-sensitive (SOS) polyethylene glycol- polyurethane-polyethylene glycol (PEG-(1O2)PU-PEG) triblock copolymer to encapsulate the doxorubicin (DOX)-loaded, chlorin e6 (Ce6)-conjugated polyamindoamine (PAMAM) dendrimer (DCD) via the double-emulsion method. Co-administration of iRGD notably increased the permeability of NCs within tumor vasculature and tumor tissues. In addition, upon far-red light irradiation (660 nm) of tumors at low optical density (10 mW/cm2), the generated 1O2 could disintegrate the NCs and release the DCD with positive surface charge and ultra-small size (~ 5 nm), which synergized with iRGD to enable deep intratumoral penetration. Consequently, the local 1O2 at lethal concentrations along with the released DOX efficiently and cooperatively eradicated tumor cells. This study provides a convenient approach to spatiotemporally promote the intratumoral penetration of nanomedicine and mediate programmed anticancer therapy.

Keywords: charge conversion, intratumoral penetration, light-responsiveness, singlet oxygen-degradable polymer, size shrinkage, iRGD

References(64)

[1]
Peer, D.; Karp, J. M.; Hong, S.; FaroKhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751-760.
[2]
Chen, H. B.; Gu, Z. J.; An, H. W.; Chen, C. Y.; Chen, J.; Cui, R.; Chen, S. Q.; Chen, W. H.; Chen, X. S.; Chen, X. Y. et al. Precise nanomedicine for intelligent therapy of cancer. Sci. China Chem. 2018, 61, 1503-1552.
[3]
Zhang, Y.; Cai, L. L.; Li, D.; Lao, Y. H.; Liu, D. Z.; Li, M. Q.; Ding, J. X.; Chen, X. S. Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. Nano Res. 2018, 11, 4806-4822.
[4]
Piao, J. G.; Gao, F.; Li, Y. N.; Yu, L.; Liu, D.; Tan, Z. B.; Xiong, Y. J.; Yang, L. H.; You, Y. Z. pH-sensitive zwitterionic coating of gold nanocages improves tumor targeting and photothermal treatment efficacy. Nano Res. 2018, 11, 3193-3204.
[5]
Li, Y. J.; Dang, J. J.; Liang, Q. J.; Yin, L. C. Thermal-responsive carbon monoxide (CO) delivery expedites metabolic exhaustion of cancer cells toward reversal of chemotherapy resistance. ACS Cent. Sci. 2019, 5, 1044-1058.
[6]
Zhou, H.; Fan, Z. Y.; Deng, J. J.; Lemons, P. K.; Arhontoulis, D. C.; Bowne, W. B.; Cheng, H. Hyaluronidase embedded in nanocarrier PEG shell for enhanced tumor penetration and highly efficient antitumor efficacy. Nano Lett. 2016, 16, 3268-3277.
[7]
Zhou, H.; Fan, Z. Y.; Li, P. Y.; Deng, J. J.; Arhontoulis, D. C.; Li, C. Y.; Bowne, W. B.; Cheng, H. Dense and dynamic polyethylene glycol shells cloak nanoparticles from uptake by liver endothelial cells for long blood circulation. ACS Nano 2018, 12, 10130-10141.
[8]
Sun, H. T.; Yan, L. Y.; Chang, M. Y. Z.; Carter, K. A.; Zhang, R. S.; Slyker, L.; Lovell, J. F.; Wu, Y.; Cheng, C. A multifunctional biodegradable brush polymer-drug conjugate for paclitaxel/ gemcitabine co-delivery and tumor imaging. Nanoscale Adv. 2019, 1, 2761-2771.
[9]
Xiong, M. H.; Bao, Y.; Xu, X.; Wang, H.; Han, Z. Y.; Wang, Z. Y.; Liu, Y. Q.; Huang, S. Y.; Song, Z. Y.; Chen, J. J. et al. Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides. Proc. Natl. Acad. Sci. USA 2017, 114, 12675-12680.
[10]
Li, Y. J.; Dang, J. J.; Liang, Q. J.; Yin, L. C. Carbon monoxide (CO)-strengthened cooperative bioreductive anti-tumor therapy via mitochondrial exhaustion and hypoxia induction. Biomaterials 2019, 209, 138-151.
[11]
Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001, 41, 189-207.
[12]
Li, Y. J.; Hu, J.; Liu, X.; Liu, Y.; Lv, S. X.; Dang, J. J.; Ji, Y.; He, J. L.; Yin, L. C. Photodynamic therapy-triggered on-demand drug release from ROS-responsive core-cross-linked micelles toward synergistic anti-cancer treatment. Nano Res. 2019, 12, 999-1008.
[13]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148, 135-146.
[14]
Li, H. C.; Fan, X. L.; Houghton, J. M. Tumor microenvironment: The role of the tumor stroma in cancer. J. Cell. Biochem. 2007, 101, 805-815.
[15]
Overchuk, M.; Zheng, G. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 2018, 156, 217-237.
[16]
Tong, R.; Langer, R. Nanomedicines targeting the tumor microenvironment. Cancer J. 2015, 21, 314-321.
[17]
Feng, B.; Zhou, F. Y.; Hou, B.; Wang, D. G.; Wang, T. T.; Fu, Y. L.; Ma, Y. T.; Yu, H. J.; Li, Y. P. Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv. Mater. 2018, 30, 1803001.
[18]
Li, J. J.; Ke, W. D.; Li, H.; Zha, Z. S.; Han, Y.; Ge, Z. S. Endogenous stimuli-sensitive multistage polymeric micelleplex anticancer drug delivery system for efficient tumor penetration and cellular internalization. Adv. Healthc. Mater. 2015, 4, 2206-2219.
[19]
Chen, B. L.; Dai, W. B.; He, B.; Zhang, H.; Wang, X. Q.; Wang, Y. G.; Zhang, Q. Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 2017, 7, 538-558.
[20]
Zhang, Y. R.; Lin, R.; Li, H. J.; He, W. L.; Du, J. Z.; Wang, J. Strategies to improve tumor penetration of nanomedicines through nanoparticle design. WIREs Nanomed. Nanobiotechnol. 2019, 11, e1519.
[21]
Su, Y. L.; Hu, S. H. Functional nanoparticles for tumor penetration of therapeutics. Pharmaceutics 2018, 10, 193.
[22]
Wang, S.; Huang, P.; Chen, X. Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 2016, 28, 7340-7364.
[23]
Niu, Y. M.; Zhu, J. H.; Li, Y.; Shi, H. H.; Gong, Y. X.; Li, R.; Huo, Q.; Ma, T.; Liu, Y. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles. J. Control. Release 2018, 277, 35-47.
[24]
Yin, H.; Yang, J.; Zhang, Q.; Wang, H. Y.; Xu, J. J.; Zheng, J. N. iRGD as a tumor-penetrating peptide for cancer therapy (review). Mol. Med. Rep. 2017, 15, 2925-2930.
[25]
Ruoslahti, E. Tumor penetrating peptides for improved drug delivery. Adv. Drug Deliv. Rev. 2017, 110-111, 3-12.
[26]
Wang, Y. Z.; Xie, Y.; Li, J.; Peng, Z. H.; Sheinin, Y.; Zhou, J. P.; Oupický, D. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano 2017, 11, 2227-2238.
[27]
Sun, Q. X.; Ojha, T.; Kiessling, F.; Lammers, T.; Shi, Y. Enhancing tumor penetration of nanomedicines. Biomacromolecules 2017, 18, 1449-1459.
[28]
Xu, X. D.; Er Saw, P.; Tao, W.; Li, Y. J.; Ji, X. Y.; Bhasin, S.; Liu, Y. L.; Ayyash, D.; Rasmussen, J.; Huo, M. et al. ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv. Mater. 2017, 29, 1700141.
[29]
Sugahara, K. N.; Teesalu, T.; Karmali, P. P.; Kotamraju, V. R.; Agemy, L.; Girard, O. M.; Hanahan, D.; Mattrey, R. F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 2009, 16, 510-520.
[30]
Su, J. H.; Sun, H. P.; Meng, Q. S.; Yin, Q.; Tang, S.; Zhang, P. C.; Chen, Y.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Long circulation red-blood-cell-mimetic nanoparticles with peptide-enhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer. Adv. Funct. Mater. 2016, 26, 1243-1252.
[31]
Teesalu, T.; Sugahara, K. N.; Kotamraju, V. R.; Ruoslahti, E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. USA 2009, 106, 16157-16162.
[32]
Kuang, J.; Song, W.; Yin, J.; Zeng, X.; Han, S.; Zhao, Y. P.; Tao, J.; Liu, C. J.; He, X. H.; Zhang, X. Z. iRGD modified chemo- immunotherapeutic nanoparticles for enhanced immunotherapy against glioblastoma. Adv. Funct. Mater. 2018, 28, 1800025.
[33]
Cun, X. L.; Chen, J. T.; Ruan, S. B.; Zhang, L.; Wan, J. Y.; He, Q.; Gao, H. L. A novel strategy through combining iRGD peptide with tumor-microenvironment-responsive and multistage nanoparticles for deep tumor penetration. ACS Appl. Mater. Interfaces 2015, 7, 27458-27466.
[34]
Puig-Saus, C.; Rojas, L. A.; Laborda, E.; Figueras, A.; Alba, R.; Fillat, C.; Alemany, R. iRGD tumor-penetrating peptide-modified oncolytic adenovirus shows enhanced tumor transduction, intratumoral dissemination and antitumor efficacy. Gene Ther. 2014, 21, 767-774.
[35]
Sugahara, K. N.; Teesalu, T.; Prakash Karmali, P.; Ramana Kotamraju, V.; Agemy, L.; Greenwald, D. R.; Ruoslahti, E. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 2010, 328, 1031-1035.
[36]
Su, Y. L.; Yu, T. W.; Chiang, W. H.; Chiu, H. C.; Chang, C. H.; Chiang, C. S.; Hu, S. H. Hierarchically targeted and penetrated delivery of drugs to tumors by size-changeable graphene quantum dot nanoaircrafts for photolytic therapy. Adv. Funct. Mater. 2017, 27, 1700056.
[37]
Li, C. X.; Zhang, Y. F.; Li, Z. M.; Mei, E. C.; Lin, J.; Li, F.; Chen, C. G.; Qing, X. L.; Hou, L. Y.; Xiong, L. L. et al. Light-responsive biodegradable nanorattles for cancer theranostics. Adv. Mater. 2018, 30, 1706150.
[38]
Yang, G. B.; Sun, X. Q.; Liu, J. J.; Feng, L. Z.; Liu, Z. Light- responsive, singlet-oxygen-triggered on-demand drug release from photosensitizer-doped mesoporous silica nanorods for cancer combination therapy. Adv. Funct. Mater. 2016, 26, 4722-4732.
[39]
Tang, L.; Yang, X. J.; Yin, Q.; Cai, K. M.; Wang, H.; Chaudhury, I.; Yao, C.; Zhou, Q.; Kwon, M.; Hartman, J. A. et al. Investigating the optimal size of anticancer nanomedicine. Proc. Natl. Acad. Sci. USA 2014, 111, 15344-15349.
[40]
Tang, L.; Fan, T. M.; Borst, L. B.; Cheng, J. J. Synthesis and biological response of size-specific, monodisperse drug-silica nanoconjugates. ACS Nano 2012, 6, 3954-3966.
[41]
Wang, Z. M.; Upputuri, P. K.; Zhen, X.; Zhang, R. C.; Jiang, Y. Y.; Ai, X. Z.; Zhang, Z. J.; Hu, M.; Meng, Z. Y.; Lu, Y. P. et al. pH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging. Nano Res. 2019, 12, 49-55.
[42]
Sun, Q. H.; Zhou, Z. X.; Qiu, N. S.; Shen, Y. Q. Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv. Mater. 2017, 29, 1606628.
[43]
Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011, 6, 815-823.
[44]
Wang, J. Q.; Mao, W. W.; Lock, L. L.; Tang, J. B.; Sui, M. H.; Sun, W. L.; Cui, H. G.; Xu, D.; Shen, Y. Q. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano 2015, 9, 7195-7206.
[45]
Sun, Q. H.; Sun, X. R.; Ma, X. P.; Zhou, Z. X.; Jin, E. L.; Zhang, B.; Shen, Y. Q.; Van Kirk, E. A.; Murdoch, W. J.; Lott, J. R. et al. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv. Mater. 2014, 26, 7615-7621.
[46]
Zhou, J.; Li, M. H.; Lim, W. Q.; Luo, Z.; Phua, S. Z. F.; Huo, R. L.; Li, L. Q.; Li, K.; Dai, L. L.; Liu, J. J. et al. A transferrin-conjugated hollow nanoplatform for redox-controlled and targeted chemotherapy of tumor with reduced inflammatory reactions. Theranostics 2018, 8, 518-532.
[47]
Shen, S.; Li, H. J.; Chen, K. G.; Wang, Y. C.; Yang, X. Z.; Lian, Z. X.; Du, J. Z.; Wang, J. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Nano Lett. 2017, 17, 3822-3829.
[48]
Dai, L. L.; Li, K.; Li, M. H.; Zhao, X. J.; Luo, Z.; Lu, L.; Luo, Y. F.; Cai, K. Y. Size/Charge changeable acidity-responsive micelleplex for photodynamic-improved PD-L1 immunotherapy with enhanced tumor penetration. Adv. Funct. Mater. 2018, 28, 1707249.
[49]
Li, H. J.; Du, J. Z.; Du, X. J.; Xu, C. F.; Sun, C. Y.; Wang, H. X.; Cao, Z. T.; Yang, X. Z.; Zhu, Y. H.; Nie, S. M. et al. Stimuli- responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. USA 2016, 113, 4164-4169.
[50]
Chen, J. J.; Ding, J. X.; Wang, Y. C.; Cheng, J. J.; Ji, S. X.; Zhuang, X. L.; Chen, X. S. Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors. Adv. Mater. 2017, 29, 1701170.
[51]
Yang, G. B.; Phua, S. Z. F.; Lim, W. Q.; Zhang, R.; Feng, L. Z.; Liu, G. F.; Wu, H. W.; Bindra, A. K.; Jana, D.; Liu, Z. et al. A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv. Mater. 2019, 31, 1901513.
[52]
Hu, C.; Cun, X. L.; Ruan, S. B.; Liu, R.; Xiao, W.; Yang, X. T.; Yang, Y. Y.; Yang, C. Y.; Gao, H. L. Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials 2018, 168, 64-75.
[53]
Jin, H.; Zhu, T.; Huang, X. G.; Sun, M.; Li, H. G.; Zhu, X. Y.; Liu, M. L.; Xie, Y. B.; Huang, W.; Yan, D. Y. ROS-responsive nanoparticles based on amphiphilic hyperbranched polyphosphoester for drug delivery: Light-triggered size-reducing and enhanced tumor penetration. Biomaterials 2019, 211, 68-80.
[54]
He, H.; Chen, Y. B.; Li, Y. J.; Song, Z. Y.; Zhong, Y. N.; Zhu, R. Y.; Cheng, J. J.; Yin, L. C. Effective and selective anti-cancer protein delivery via all-functions-in-one nanocarriers coupled with visible light-responsive, reversible protein engineering. Adv. Funct. Mater. 2018, 28, 1706710.
[55]
Dang, J. J.; Ye, H.; Li, Y. J.; Liang, Q. J.; Li, X. D.; Yin, L. C. Multivalency-assisted membrane-penetrating siRNA delivery sensitizes photothermal ablation via inhibition of tumor glycolysis metabolism. Biomaterials 2019, 223, 119463.
[56]
Wang, J. H.; He, H.; Xu, X.; Wang, X.; Chen, Y. B.; Yin, L. C. Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials 2018, 171, 72-82.
[57]
Zhou, Y.; Ye, H.; Chen, Y. B.; Zhu, R. Y.; Yin, L. C. Photoresponsive drug/gene delivery systems. Biomacromolecules 2018, 19, 1840-1857.
[58]
Xiong, X.; Xu, Z.; Huang, H. B.; Wang, Y.; Zhao, J. Y.; Guo, X.; Zhou, S. B. A NIR light triggered disintegratable nanoplatform for enhanced penetration and chemotherapy in deep tumor tissues. Biomaterials 2020, 245, 119840.
[59]
Li, F. Y.; Du, Y.; Liu, J. N.; Sun, H.; Wang, J.; Li, R. Q.; Kim, D.; Hyeon, T.; Ling, D. Responsive assembly of upconversion nanoparticles for pH-activated and near-infrared-triggered photodynamic therapy of deep tumors. Adv. Mater. 2018, 30, 1802808.
[60]
Dang, J. J.; He, H.; Chen, D. L.; Yin, L. C. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater. Sci. 2017, 5, 1500-1511.
[61]
Zhu, R. Y.; He, H.; Liu, Y.; Cao, D. S.; Yan, J.; Duan, S. Z.; Chen, Y. B.; Yin, L. C. Cancer-selective bioreductive chemotherapy mediated by dual hypoxia-responsive nanomedicine upon photodynamic therapy-induced hypoxia aggravation. Biomacromolecules 2019, 20, 2649-2656.
[62]
Ye, H.; Zhou, Y.; Liu, X.; Chen, Y. B.; Duan, S. Z.; Zhu, R. Y.; Liu, Y.; Yin, L. C. Recent advances on reactive oxygen species- responsive delivery and diagnosis system. Biomacromolecules 2019, 20, 2441-2463.
[63]
Nagelkerke, A.; Bussink, J.; Sweep, F. C. G. J.; Span, P. N. Generation of multicellular tumor spheroids of breast cancer cells: How to go three-dimensional. Anal. Biochem. 2013, 437, 17-19.
[64]
Baugh, S. D. P.; Yang, Z. W.; Leung, D. K.; Wilson, D. M.; Breslow, R. Cyclodextrin dimers as cleavable carriers of photodynamic sensitizers. J. Am. Chem. Soc. 2001, 123, 12488-12494.
File
12274_2020_2913_MOESM1_ESM.pdf (4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 April 2020
Revised: 31 May 2020
Accepted: 03 June 2020
Published: 05 October 2020
Issue date: October 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The research was financially supported by the National Natural Science Foundation of China (Nos. 51873142, 51722305, and 81903068), the Ministry of Science and Technology of China (No. 2016YFA0201200), 111 project, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Return