Journal Home > Volume 13 , Issue 10

Highly efficient photo-assisted electrocatalysis for methanol oxidation reaction (MOR) realizes the conversion of solar and chemical energy into electric energy simultaneously. Here we report a Pt-MXene-TiO2 composite for highly efficient MOR via a photoactive cascaded electro-catalytic process. With light (UV and visible light) irradiation, MXene-TiO2 serves as the photo active centre (photoinduced hole) to activate the methanol molecules, while Pt particles are the active centre for the following electro-catalytic oxidation of those activated methanol molecules. Pt-MXene-TiO2 catalyst exhibits a lower onset potential (0.33 V) and an impressive mass activity of 2,750.42 mA·mg-1Pt under light illumination. It represents the highest MOR activity ever reported for photo-assisted electrocatalysts. Pt-MXene-TiO2 also shows excellent CO tolerance ability and stability, in which, after long-term (5,000 s) reaction, still keeps a high mass activity of 1,269.81 mA·mg-1Pt (62.66% of its initial activity). The photo-electro-catalytic system proposed in this work offers novel opportunities for exploiting photo-assisted enhancement of highly efficient and stable catalysts for MOR.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite

Show Author's information Yue Sun§Yunjie Zhou§Yan LiuQingyao WuMengmeng ZhuHui HuangYang Liu( )Mingwang Shao( )Zhenhui Kang( )
Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China

§ Yue Sun and Yunjie Zhou contributed equally to this work.

Abstract

Highly efficient photo-assisted electrocatalysis for methanol oxidation reaction (MOR) realizes the conversion of solar and chemical energy into electric energy simultaneously. Here we report a Pt-MXene-TiO2 composite for highly efficient MOR via a photoactive cascaded electro-catalytic process. With light (UV and visible light) irradiation, MXene-TiO2 serves as the photo active centre (photoinduced hole) to activate the methanol molecules, while Pt particles are the active centre for the following electro-catalytic oxidation of those activated methanol molecules. Pt-MXene-TiO2 catalyst exhibits a lower onset potential (0.33 V) and an impressive mass activity of 2,750.42 mA·mg-1Pt under light illumination. It represents the highest MOR activity ever reported for photo-assisted electrocatalysts. Pt-MXene-TiO2 also shows excellent CO tolerance ability and stability, in which, after long-term (5,000 s) reaction, still keeps a high mass activity of 1,269.81 mA·mg-1Pt (62.66% of its initial activity). The photo-electro-catalytic system proposed in this work offers novel opportunities for exploiting photo-assisted enhancement of highly efficient and stable catalysts for MOR.

Keywords: electrocatalysis, methanol oxidation reaction, photoelectrochemistry, photoactive process, cascade

References(37)

[1]
Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science 1998, 280, 1735-1737.
[2]
Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanolfuel cells. Energy Environ. Sci. 2011, 4, 2736-2753.
[3]
Chu, Y. Y.; Wang, Z. B.; Jiang, Z. Z.; Gu, D. M.; Yin, G. P. A novel structural design of a Pt/C-CeO2 catalyst with improved performance for methanol electro-oxidation by β-cyclodextrin carbonization. Adv. Mater. 2011, 23, 3100-3104.
[4]
Huang, H. J.; Yang, S. B.; Vajtai, R.; Wang, X.; Ajayan, P. M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 2014, 26, 5160-5165.
[5]
Yan, H. J.; Tian, C. G.; Sun, L.; Wang, B.; Wang, L.; Yin, J.; Wu, A. P.; Fu, H. G. Small-sized and high-dispersed WN from [SiO4(W3O9)4]4- clusters loading on GO-derived graphene as promising carriers for methanol electro-oxidation. Energy Environ. Sci. 2014, 7, 1939-1949.
[6]
Jahan, M.; Bao, Q. L.; Loh, K. P. Electrocatalytically active graphene- porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 6707-6713.
[7]
Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru? Chem. Rev. 2014, 114, 12397-12429.
[8]
Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934-13937.
[9]
Narayanamoorthy, B.; Datta, K. K. R.; Eswaramoorthy, M.; Balaji, S. Highly active and stable Pt3Rh nanoclusters as supportless electrocatalyst for methanol oxidation in direct methanol fuel cells. ACS Catal. 2014, 4, 3621-3629.
[10]
Cao, X.; Wang, N.; Han, Y.; Gao, C. Z.; Xu, Y.; Li, M. X.; Shao, Y. H. PtAg bimetallic nanowires: Facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells. Nano Energy 2015, 12, 105-114.
[11]
Yu, L. H.; Shao, Y.; Li, D. Z. Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2. Appl. Catal. B Environ. 2017, 204, 216-223.
[12]
Su, C. Y.; Hsueh, Y. C.; Kei, C. C.; Lin, C. T.; Perng, T. P. Fabrication of high-activity hybrid Pt@ZnO catalyst on carbon cloth by atomic layer deposition for photoassisted electro-oxidation of methanol. J. Phys. Chem. C 2013, 117, 11610-11618.
[13]
Wu, S. C.; He, J. P.; Zhou, J. H.; Wang, T.; Guo, Y. X.; Zhao, J. Q.; Ding, X. C. Fabrication of unique stripe-shaped mesoporous TiO2 films and their performance as a novel photo-assisted catalyst support for DMFCs. J. Mater. Chem. 2011, 21, 2852-2854.
[14]
Polo, A. S.; Santos, M. C.; De Souza, R. F. B.; Alves, W. A. Pt-Ru-TiO2 photoelectrocatalysts for methanol oxidation. J. Power Sources 2011, 196, 872-876.
[15]
Li, W.; Bai, Y.; Li, F. J.; Liu, C.; Chan, K. Y.; Feng, X.; Lu, X. H. Core-shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol. J. Mater. Chem. 2012, 22, 4025-4031.
[16]
Drew, K.; Girishkumar, G.; Vinodgopal, K.; Kamat, P. V. Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt-Ru hybrid catalyst for methanol oxidation. J. Phys. Chem. B 2005, 109, 11851-11857.
[17]
Kim, S.; Hwang, S. J.; Choi, W. Visible light active platinum-ion- doped TiO2 photocatalyst. J. Phys. Chem. B. 2005, 109, 24260-24267.
[18]
Zhu, M. S.; Zhai, C. Y.; Sun, M. J.; Hu, Y. F.; Yan, B.; Du, Y. K. Ultrathin graphitic C3N4 nanosheet as a promising visible-light- activated support for boosting photoelectrocatalytic methanol oxidation. Appl. Catal. B Environ. 2017, 203, 108-115.
[19]
Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.
[20]
Köhler, R.; Tredicucci, A.; Beltram, F.; Beere, H. E.; Linfield, E. H.; Davies, A. G.; Ritchie, D. A.; Iotti, R. C.; Rossi, F. Terahertz semiconductor-heterostructure laser. Nature 2002, 417, 156-159.
[21]
Lin, X. P.; Xing, J. C.; Wang, W. D.; Shan, Z. C.; Xu, F. F.; Huang, F. Q. Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: A strategy for the design of efficient combined photocatalysts. J. Phys. Chem. C 2007, 111, 18288-18293.
[22]
Zhang, H.; Chen, G.; Bahnemann, D. W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 2009, 19, 5089-5121.
[23]
Chen, Y. Z.; Wang, Z. U.; Wang, H. W.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc. 2017, 139, 2035-2044.
[24]
Katz, E.; Willner, B.; Willner, I. Light-controlled electron transfer reactions at photoisomerizable monolayer electrodes by means of electrostatic interactions: Active interfaces for the amperometric transduction of recorded optical signals. Biosens. Bioelectron. 1997, 12, 703-719.
[25]
Čejka, J.; Nachtigall, P.; Centi, G. New catalytic materials for energy and chemistry in transition. Chem. Soc. Rev. 2018, 47, 8066-8071.
[26]
Sudarsanam, P.; Zhong, R. Y.; Van Den Bosch, S.; Coman, S. M.; Parvulescu, V. I.; Sels, B. F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev. 2018, 47, 8349-8402.
[27]
Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633-7644.
[28]
Peng, C.; Wei, P.; Li, X. Y.; Liu, Y. P.; Cao, Y. H.; Wang, H. J.; Yu, H.; Peng, F.; Zhang, L. Y.; Zhang, B. S. et al. High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 2018, 53, 97-107.
[29]
Peng, C.; Yang, X. F.; Li, Y. H.; Yu, H.; Wang, H. J.; Peng, F. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 2016, 8, 6051-6060.
[30]
Peng, C.; Wang, H. J.; Yu, H.; Peng, F. (111) TiO2-x/Ti3C2: Synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Mater. Res. Bull. 2017, 89, 16-25.
[31]
Xu, Y. J.; Wang, S.; Yang, J.; Han, B.; Nie, R.; Wang, J. X.; Wang, J. G.; Jing, H. W. In-situ grown nanocrystal TiO2 on 2D Ti3C2 nanosheets for artificial photosynthesis of chemical fuels. Nano Energy 2018, 51, 442-450.
[32]
An, X. Q.; Wang, W.; Wang, J. P.; Duan, H. Z.; Shi, J. T.; Yu, X. L. The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys. 2018, 20, 11405-11411.
[33]
Haselmann, G. M.; Eder, D. Early-stage deactivation of Platinum- loaded TiO2 using in situ photodeposition during photocatalytic hydrogen evolution. ACS Catal. 2017, 7, 4668-4675.
[34]
Cao, S. W.; Jiang, J.; Zhu, B. C.; Yu, J. G. Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4 photocatalyst. Phys. Chem. Chem. Phys. 2016, 18, 19457-19463.
[35]
Liu, Q. X.; Ai, L. H.; Jiang, J. MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation. J. Mater. Chem. A 2018, 6, 4102-4110.
[36]
Li, Z. S.; Ye, L. T.; Lei, F. L.; Wang, Y. L.; Xu, S. H.; Lin, S. Enhanced electro-photo synergistic catalysis of Pt(Pd)/ZnO/graphene composite for methanol oxidation under visible light irradiation. Electrochim. Acta 2016, 188, 450-460.
[37]
Odetola, C.; Trevani, L. N.; Easton, E. B. Photo enhanced methanol electrooxidation: Further insights into Pt and TiO2 nanoparticle contributions. Appl. Catal. B Environ. 2017, 210, 263-275.
File
12274_2020_2910_MOESM1_ESM.pdf (6.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 April 2020
Revised: 16 May 2020
Accepted: 30 May 2020
Published: 05 October 2020
Issue date: October 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work is supported by National MCF Energy R&D Program (No. 2018YFE0306105), Innovative Research Group Project of the National Natural Science Foundation of China (No. 51821002), the National Natural Science Foundation of China (Nos. 51725204, 21771132, 51972216, and 52041202), Natural Science Foundation of Jiangsu Province (Nos. BK20190041 and BK20190828), Key-Area Research and Development Program of GuangDong Province (No. 2019B010933001), Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the 111 Project.‬‬‬‬‬‬‬

Return