Journal Home > Volume 13 , Issue 10

Nanoparticle photosensitizers possess technical advantages for photocatalytic reactions due to enhanced light harvesting and efficient charge transport. Here we report synthesis of semiconductor nanoparticles through covalent coupling and assembly of metalloporphyrin with condensed carbon nitride. The resultant nanoparticles consist of light harvesting component from the condensed carbon nitride and photocatalytic sites from the metalloporphyrins. This synergetic particle system effectively initiates efficient charge separation and transport and exhibits excellent photocatalytic activity for CO2 reduction. The CO production rate can reach up to 57 μmol/(g·h) with a selectivity of 79% over competing H2 evolution. Controlled experiments demonstrate that the combination of light harvesting with photocatalytic activity via covalent assembly is crucial for the high photocatalytic activity. Due to effective charge separation and transfer, the resultant nanoparticle photocatalysts show exceptional photo stability against photo-corrosion under light irradiation, enabling for long-term utilization. This research opens a new way for the development of stable, effective nanoparticle photocatalysts using naturally abundant porphyrin pigments.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding

Show Author's information Shufang Tian1Sudi Chen1Xitong Ren1Yaoqing Hu1Haiyan Hu1Jiajie Sun2( )Feng Bai1( )
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High- efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
School of Physics and Electronics, Henan University, Kaifeng 475004, China

Abstract

Nanoparticle photosensitizers possess technical advantages for photocatalytic reactions due to enhanced light harvesting and efficient charge transport. Here we report synthesis of semiconductor nanoparticles through covalent coupling and assembly of metalloporphyrin with condensed carbon nitride. The resultant nanoparticles consist of light harvesting component from the condensed carbon nitride and photocatalytic sites from the metalloporphyrins. This synergetic particle system effectively initiates efficient charge separation and transport and exhibits excellent photocatalytic activity for CO2 reduction. The CO production rate can reach up to 57 μmol/(g·h) with a selectivity of 79% over competing H2 evolution. Controlled experiments demonstrate that the combination of light harvesting with photocatalytic activity via covalent assembly is crucial for the high photocatalytic activity. Due to effective charge separation and transfer, the resultant nanoparticle photocatalysts show exceptional photo stability against photo-corrosion under light irradiation, enabling for long-term utilization. This research opens a new way for the development of stable, effective nanoparticle photocatalysts using naturally abundant porphyrin pigments.

Keywords: carbon nitride, photocatalysis, CO2 reduction, two-dimensional nanosheets, porphyrin, covalent bonding, function integrated

References(58)

[1]
Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637-638.
[2]
Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010, 3, 43-81.
[3]
Costentin, C.; Robert, M.; Savéant, J. M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 2013, 42, 2423-2436.
[4]
Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607-4626.
[5]
White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888-12935.
[6]
Liu, K. T.; Li, X. D.; Liang, L.; Wu, J.; Jiao, X. C.; Xu, J. Q.; Sun, Y. F.; Xie, Y. Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2. Nano Res. 2018, 11, 2897-2908.
[7]
Zhang, N.; Long, R.; Gao, C.; Xiong, Y. J. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci. China Mater. 2018, 61, 771-805.
[8]
Zhu, Y. Z.; Gao, C.; Bai, S.; Chen, S. M.; Long, R.; Song, L.; Li, Z. Q.; Xiong, Y. J. Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO2 reduction into CH4. Nano Res. 2017, 10, 3396-3406.
[9]
Xia, Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Liu, G. Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci. China Mater. 2020, 63, 552-565.
[10]
Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987-10043.
[11]
Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150-2176.
[12]
Morris, A. J.; Meyer, G. J.; Fujita, E. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc. Chem. Res. 2009, 42, 1983-1994.
[13]
Zhang, T.; Lin, W. B. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43, 5982-5993.
[14]
Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962-4179.
[15]
Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew. Chem., Int. Ed. 2016, 55, 5414-5445.
[16]
Tran, P. D.; Wong, L. H.; Barber, J.; Loo, J. S. C. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci. 2012, 5, 5902-5918.
[17]
Yu, J. G.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839-8842.
[18]
Lee, S. K.; Kondo, M.; Okamura, M.; Enomoto, T.; Nakamura, G.; Masaoka, S. Function-integrated Ru catalyst for photochemical CO2 reduction. J. Am. Chem. Soc. 2018, 140, 16899-16903.
[19]
Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J. Am. Chem. Soc. 2008, 130, 2023-2031.
[20]
Gholamkhass, B.; Mametsuka, H.; Koike, K.; Tanabe, T.; Furue, M.; Ishitani, O. Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: Ruthenium-rhenium Bi- and tetranuclear complexes. Inorg. Chem. 2005, 44, 2326-2336.
[21]
Windle, C. D.; Perutz, R. N. Advances in molecular photocatalytic and electrocatalytic CO2 reduction. Coord. Chem. Rev. 2012, 256, 2562-2570.
[22]
Takeda, H.; Ishitani, O. Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coord. Chem. Rev. 2010, 254, 346-354.
[23]
Nakada, A.; Kuriki, R.; Sekizawa, K.; Nishioka, S.; Vequizo, J. J. M.; Uchiyama, T.; Kawakami, N.; Lu, D. L.; Yamakata, A.; Uchimoto, Y. et al. Effects of interfacial electron transfer in metal complex-semiconductor hybrid photocatalysts on Z-scheme CO2 reduction under visible light. ACS Catal. 2018, 8, 9744-9754.
[24]
Sekizawa, K.; Maeda, K.; Domen, K.; Koike, K.; Ishitani, O. Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J. Am. Chem. Soc. 2013, 135, 4596-4599.
[25]
Arai, T.; Sato, S.; Kajino, T.; Morikawa, T. Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: Enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes. Energy Environ. Sci. 2013, 6, 1274-1282.
[26]
Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction. ACS Catal. 2017, 7, 70-88.
[27]
Chen, L. J.; Guo, Z. G.; Wei, X. G.; Gallenkamp, C.; Bonin, J.; Anxolabehere-Mallart, E.; Lau, K. C.; Lau, T. C.; Robert, M. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with earth-abundant metal complexes. Selective production of CO vs. HCOOH by switching of the metal center. J. Am. Chem. Soc. 2015, 137, 10918-10921.
[28]
Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.
[29]
Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem., Int. Ed. 2012, 51, 68-89.
[30]
Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159-7329.
[31]
Yu, M. Q.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the synergetic effect of NaYF4: Er3+/Yb3+ and g-C3N4. Sci. China Mater. 2017, 60, 228-238.
[32]
Ong, W. J.; Putri, L. K.; Tan, Y. C.; Tan, L. L.; Li, N.; Ng, Y. H.; Wen, X. M.; Chai, S. P. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Res. 2017, 10, 1673-1696.
[33]
Han, C. Q.; Li, J.; Ma, Z. Y.; Xie, H. Q.; Waterhouse, G. I. N.; Ye, L. Q.; Zhang, T. R. Black phosphorus quantum dot/g-C3N4 composites for enhanced CO2 photoreduction to CO. Sci. China Mater. 2018, 61, 1159-1166.
[34]
Tang, S. F.; Yin, X. P.; Wang, G. Y.; Lu, X. L.; Lu, T. B. Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst. Nano Res. 2019, 12, 457-462.
[35]
Kuriki, R.; Matsunaga, H.; Nakashima, T.; Wada, K.; Yamakata, A.; Ishitani, O.; Maeda, K. Nature-inspired, highly durable CO2 reduction system consisting of a binuclear ruthenium(II) complex and an organic semiconductor using visible light. J. Am. Chem. Soc. 2016, 138, 5159-5170.
[36]
Kuriki, R.; Maeda, K. Development of hybrid photocatalysts constructed with a metal complex and graphitic carbon nitride for visible-light-driven CO2 reduction. Phys. Chem. Chem. Phys. 2017, 19, 4938-4950.
[37]
Kumar, A.; Kumar, P.; Borkar, R.; Bansiwal, A.; Labhsetwar, N.; Jain, S. L. Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride supported heteroleptic iridium complex under visible light irradiation. Carbon 2017, 123, 371-379.
[38]
Maeda, K.; Sekizawa, K.; Ishitani, O. Polymeric-semiconductor- metal-complex hybrid photocatalyst for visible-light CO2 reduction. Chem. Commun. 2013, 49, 10127-10129.
[39]
Maeda, K. Metal-complex/semiconductor hybrid photocatalysts and photoelectrodes for CO2 reduction driven by visible light. Adv. Mater. 2019, 31, 1808205.
[40]
Zhang, J. S.; Zhang, G. G.; Chen, X. F.; Lin, S.; Möhlmann, L.; Dolega, G.; Lipner, G.; Antonietti, M.; Blechert, S.; Wang, X. C. Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew. Chem., Int. Ed. 2012, 51, 3183-3187.
[41]
Zhang, J. S.; Chen, X. F.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J. D.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem., Int. Ed. 2010, 49, 441-444.
[42]
Diercks, C. S.; Lin, S.; Kornienko, N.; Kapustin, E. A.; Nichols, E. M.; Zhu, C. H.; Zhao, Y. B.; Chang, C. J.; Yaghi, O. M. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 1116-1122.
[43]
Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208-1213.
[44]
Rao, H.; Lim, C. H.; Bonin, J.; Miyake, G. M.; Robert, M. Visible-light- driven conversion of CO2 to CH4 with an organic sensitizer and an iron porphyrin catalyst. J. Am. Chem. Soc. 2018, 140, 17830-17834.
[45]
Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310-14314.
[46]
Bai, F.; Bian, K. F.; Huang, X.; Wang, Z. W.; Fan, H. Y. Pressure induced nanoparticle phase behavior, property, and applications. Chem. Rev. 2019, 119, 7673-7717.
[47]
Liu, Y. Q.; Wang, L.; Feng, H. X.; Ren, X. T.; Ji, J. J.; Bai, F.; Fan, H. Y. Microemulsion-assisted self-assembly and synthesis of size- controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen evolution. Nano Lett. 2019, 19, 2614-2619.
[48]
Wei, W. B.; Bai, F.; Fan, H. Y. Surfactant-assisted cooperative self- assembly of nanoparticles into active nanostructures. iScience 2019, 11, 272-293.
[49]
Wang, D.; Niu, L. J.; Qiao, Z. Y.; Cheng, D. B.; Wang, J. F.; Zhong, Y.; Bai, F.; Wang, H.; Fan, H. Y. Synthesis of self-assembled porphyrin nanoparticle photosensitizers. ACS Nano 2018, 12, 3796-3803.
[50]
Zhang, N.; Wang, L.; Wang, H. M.; Cao, R. H.; Wang, J. F.; Bai, F.; Fan, H. Y. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018, 18, 560-566.
[51]
Wang, J. F.; Zhong, Y.; Wang, X.; Yang, W. T.; Bai, F.; Zhang, B. B.; Alarid, L.; Bian, K. F.; Fan, H. Y. pH-dependent assembly of porphyrin-silica nanocomposites and their application in targeted photodynamic therapy. Nano Lett. 2017, 17, 6916-6921.
[52]
Wang, J. F.; Zhong, Y.; Wang, L.; Zhang, N.; Cao, R. H.; Bian, K. F.; Alarid, L.; Haddad, R. E.; Bai, F.; Fan, H. Y. Morphology-controlled synthesis and metalation of porphyrin nanoparticles with enhanced photocatalytic performance. Nano Lett. 2016, 16, 6523-6528.
[53]
Lin, L.; Hou, C. C.; Zhang, X. H.; Wang, Y. J.; Chen, Y.; He, T. Highly efficient visible-light driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra(4-carboxyphenyl)porphyrin iron(III) chloride heterogeneous catalysts. Appl. Catal. B Environ. 2018, 221, 312-319.
[54]
Zhao, G. X.; Pang, H.; Liu, G. G.; Li, P.; Liu, H. M.; Zhang, H. B.; Shi, L.; Ye, J. H. Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light. Appl. Catal. B Environ. 2017, 200, 141-149.
[55]
Yang, W.; Yang, F.; Hu, T. L.; King, S. C.; Wang, H. L.; Wu, H.; Zhou, W.; Li, J. R.; Arman, H. D.; Chen, B. L. Microporous diaminotriazine-decorated porphyrin-based hydrogen-bonded organic framework: Permanent porosity and proton conduction. Cryst. Growth Des. 2016, 16, 5831-5835.
[56]
Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763-4770.
[57]
Xu, J.; Zhang, L. W.; Shi, R.; Zhu, Y. F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 2013, 1, 14766-14772.
[58]
Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18-21.
File
12274_2020_2908_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 May 2020
Revised: 28 May 2020
Accepted: 29 May 2020
Published: 26 June 2020
Issue date: October 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

F. B. acknowledges the support from the National Natural Science Foundation of China (Nos. 21771055 and U1604139), Zhongyuan high level talents special support plan (No. 204200510010), and Scientific and Technological Innovation Team in University of Henan Province (No. 20IRTSTHN001).

Return