Journal Home > Volume 13 , Issue 7

Carbon nanotubes (CNTs) work as the promising components of miniature electromechanical systems due to their excellent performances from individual to bundle scales. But it’s challenging to achieve precise patterning at nanoscale resolution with controlled position and orientation. Here, we demonstrate a fluidic strategy to interlace one-dimensional (1D) ultralong CNTs into the crossed pattern in a one-step in-situ process. Semi-circular substrates of different diameters were placed in front of the growth substrate to change the path and momentum of gas flow. Such flow perturbation caused by substrates could be markedly reflected within a micro-channel reactor, which led to formation of crossed ultralong CNTs at definite positions. Furthermore, precise control over the crossing angle as well as the diameter distribution of CNTs was achieved by varying the CNT length and diameter of semi-circular substrates. Our strategy has offered a feasible route for production of crossed ultralong CNTs and will contribute to multidimensional fluidic assembly of flexible nanomaterials.


menu
Abstract
Full text
Outline
About this article

Controlled growth of crossed ultralong carbon nanotubes by gas flow

Show Author's information Zhenxing Zhu1Yunxiang Bai1Nan Wei2Jun Gao1Silei Sun1Chenxi Zhang1Fei Wei1 ( )
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Nano Materials Group, Department of Applied Physics and Center for New Materials, School of Science, Aalto University, PO Box 15100, FI-00076 Aalto, Finland

Abstract

Carbon nanotubes (CNTs) work as the promising components of miniature electromechanical systems due to their excellent performances from individual to bundle scales. But it’s challenging to achieve precise patterning at nanoscale resolution with controlled position and orientation. Here, we demonstrate a fluidic strategy to interlace one-dimensional (1D) ultralong CNTs into the crossed pattern in a one-step in-situ process. Semi-circular substrates of different diameters were placed in front of the growth substrate to change the path and momentum of gas flow. Such flow perturbation caused by substrates could be markedly reflected within a micro-channel reactor, which led to formation of crossed ultralong CNTs at definite positions. Furthermore, precise control over the crossing angle as well as the diameter distribution of CNTs was achieved by varying the CNT length and diameter of semi-circular substrates. Our strategy has offered a feasible route for production of crossed ultralong CNTs and will contribute to multidimensional fluidic assembly of flexible nanomaterials.

Keywords: crossed ultralong carbon nanotubes, nanoscale patterning, controlled synthesis, fluidic assembly

References(32)

[1]
Liu, X.; Long, Y. Z.; Liao, L.; Duan, X. F.; Fan, Z. Y. Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 2012, 6, 1888-1900.
[2]
Che, Y. C.; Chen, H. T.; Gui, H.; Liu, J.; Liu, B. L.; Zhou, C. W. Review of carbon nanotube nanoelectronics and macroelectronics. Semicond. Sci. Technol. 2014, 29, 073001.
[3]
Rao, R.; Pint, C. L.; Islam, A. E.; Weatherup, R. S.; Hofmann, S.; Meshot, E. R.; Wu, F. Q.; Zhou, C. W.; Dee, N.; Amama, P. B. et al. Carbon nanotubes and related nanomaterials: Critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 2018, 12, 11756-11784.
[4]
Qing, Q.; Nezich, D. A.; Kong, J.; Wu, Z. Y.; Liu, Z. F. Local gate effect of mechanically deformed crossed carbon nanotube junction. Nano Lett. 2010, 10, 4715-4720.
[5]
Vitali, L.; Burghard, M.; Wahl, P.; Schneider, M. A.; Kern, K. Local pressure-induced metallization of a semiconducting carbon nanotube in a crossed junction. Phys. Rev. Lett. 2006, 96, 086804.
[6]
Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94-97.
[7]
Zhong, Z. H.; Wang, D. L.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 2003, 302, 1377-1379.
[8]
Sun, D. M.; Timmermans, M. Y.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E. I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 2011, 6, 156-161.
[9]
Heath, J. R.; Kuekes, P. J.; Snider, G. S.; Williams, R. S. A defect-tolerant computer architecture: Opportunities for nanotechnology. Science 1998, 280, 1716-1721.
[10]
Zhang, J. W.; Cui, J. L.; Wang, X. W.; Wang, W. J.; Mei, X. S.; Yi, P. Y.; Yang, X. J.; He, X. Q. Recent progress in the preparation of horizontally ordered carbon nanotube assemblies from solution. Phys. Status Solidi A 2018, 215, 1700719.
[11]
Cao, Q.; Han, S. J.; Tulevski, G. S. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch. Nat. Commun. 2014, 5, 5071.
[12]
Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180-186.
[13]
Huang, L. M.; Jia, Z.; O'Brien, S. Orientated assembly of single-walled carbon nanotubes and applications. J. Mater. Chem. 2007, 17, 3863-3874.
[14]
Zhang, Y. G.; Chang, A.; Cao, J.; Wang, Q.; Kim, W.; Li, Y. M.; Morris, N.; Yenilmez, E.; Kong, J.; Dai, H. J. Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 2001, 79, 3155-3157.
[15]
Geblinger, N.; Ismach, A.; Joselevich, E. Self-organized nanotube serpentines. Nat. Nanotechnol. 2008, 3, 195-200.
[16]
Yao, Y. G.; Dai, X. C.; Feng, C. Q.; Zhang, J.; Liang, X. L.; Ding, L.; Choi, W.; Choi, J. Y.; Kim, J. M.; Liu, Z. F. Crinkling ultralong carbon nanotubes into serpentines by a controlled landing process. Adv. Mater. 2009, 21, 4158-4162.
[17]
Zhang, R. F.; Zhang, Y. Y.; Wei, F. Controlled synthesis of ultralong carbon nanotubes with perfect structures and extraordinary properties. Acc. Chem. Res. 2017, 50, 179-189.
[18]
Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Qian, W. Z.; Wei, F. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano 2013, 7, 6156-6161.
[19]
Zhu, Z. X.; Wei, N.; Cheng, W. J.; Shen, B. Y.; Sun, S. L.; Gao, J.; Wen, Q.; Zhang, R. F.; Xu, J.; Wang, Y. et al. Rate-selected growth of ultrapure semiconducting carbon nanotube arrays. Nat. Commun. 2019, 10, 4467.
[20]
Zhu, Z. X.; Wei, N.; Xie, H. H.; Zhang, R. F.; Bai, Y. X.; Wang, Q.; Zhang, C. X.; Wang, S.; Peng, L. M.; Dai, L. M. et al. Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors. Sci. Adv. 2016, 2, e1601572.
[21]
Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589-595.
[22]
Liu, Y.; Hong, J. X.; Zhang, Y.; Cui, R. L.; Wang, J. Y.; Tan, W. C.; Li, Y. Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow. Nanotechnology 2009, 20, 185601.
[23]
Huang, S. M.; Cai, X. Y.; Liu, J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 2003, 125, 5636-5637.
[24]
Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234-238.
[25]
Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522-524.
[26]
Yao, Y. G.; Li, Q. W.; Zhang, J.; Liu, R.; Jiao, L. Y.; Zhu, Y. T.; Liu, Z. F. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nat. Mater. 2007, 6, 283-286.
[27]
Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47-99.
[28]
Sfeir, M. Y.; Beetz, T.; Wang, F.; Huang, L. M.; Huang, X. M. H.; Huang, M. Y.; Hone, J.; O’Brien, S.; Misewich, J. A.; Heinz, T. F. et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 2006, 312, 554-556.
[29]
Wu, W. Y.; Yue, J. Y.; Lin, X. Y.; Li, D. Q.; Zhu, F. Q.; Yin, X.; Zhu, J.; Wang, J. T.; Zhang, J.; Chen, Y. et al. True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering. Nano Res. 2015, 8, 2721-2732.
[30]
Hong, B. H.; Lee, J. Y.; Beetz, T.; Zhu, Y. M.; Kim, P.; Kim, K. S. Quasi-continuous growth of ultralong carbon nanotube arrays. J. Am. Chem. Soc. 2005, 127, 15336-15337.
[31]
Xie, H. H.; Zhang, R. F.; Zhang, Y. Y.; Yin, Z.; Jian, M. Q.; Wei, F. Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays. Carbon 2016, 98, 157-161.
[32]
Li, Y.; Cui, R. L.; Ding, L.; Liu, Y.; Zhou, W. W.; Zhang, Y.; Jin, Z.; Peng, F.; Liu, J. How catalysts affect the growth of single-walled carbon nanotubes on substrates. Adv. Mater. 2010, 22, 1508-1515.
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 March 2020
Revised: 23 April 2020
Accepted: 22 May 2020
Published: 09 June 2020
Issue date: July 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Nos. 2016YFA0200101 and 2016YFA0200102) and the National Natural Science Foundation of China (No. 21636005).

Return