Journal Home > Volume 14 , Issue 6

Two-dimensional (2D) materials are promising candidates in wide applications including energy storage and conversion, sensors, flexible devices, etc. The low-cost production of 2D materials with large quantities and demanded quality is the precondition for their commercial uses. For graphene and its derivatives, relatively mature techniques have been established for their scalable preparation and industrial applications. Whereas the mass production of 2D materials beyond graphene is still in its early age and it lacks a summary on this topic. This review systematically describes the state-of-the-art approaches for high-yield preparation of 2D materials beyond graphene, including "top-down" exfoliation and "bottom-up" synthetic approaches. In particular, each method is discussed from the perspectives of its principle, optimization attempts, characteristics of the obtained 2D materials, and its scalability potential. The applications that require massively-produced 2D materials are highlighted, including electrocatalysis, batteries, supercapacitors, mechanical and chemical sensors, as well as electromagnetic interference shielding and microwave absorption devices. Finally, we propose the challenges and opportunities for scalable preparation and commercial applications of 2D materials.


menu
Abstract
Full text
Outline
About this article

Mass production of two-dimensional materials beyond graphene and their applications

Show Author's information Liusi YangWenjun ChenQiangmin YuBilu Liu( )
Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

Two-dimensional (2D) materials are promising candidates in wide applications including energy storage and conversion, sensors, flexible devices, etc. The low-cost production of 2D materials with large quantities and demanded quality is the precondition for their commercial uses. For graphene and its derivatives, relatively mature techniques have been established for their scalable preparation and industrial applications. Whereas the mass production of 2D materials beyond graphene is still in its early age and it lacks a summary on this topic. This review systematically describes the state-of-the-art approaches for high-yield preparation of 2D materials beyond graphene, including "top-down" exfoliation and "bottom-up" synthetic approaches. In particular, each method is discussed from the perspectives of its principle, optimization attempts, characteristics of the obtained 2D materials, and its scalability potential. The applications that require massively-produced 2D materials are highlighted, including electrocatalysis, batteries, supercapacitors, mechanical and chemical sensors, as well as electromagnetic interference shielding and microwave absorption devices. Finally, we propose the challenges and opportunities for scalable preparation and commercial applications of 2D materials.

Keywords: two-dimensional (2D) materials, applications, mass production, "top-down" exfoliation, "bottom-up" synthesis

References(145)

[1]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[2]
Y. W. Zhu,; H. X. Ji,; H. M. Cheng,; R. S. Ruoff, Mass production and industrial applications of graphene materials. Natl. Sci. Rev. 2018, 5, 90-101.
[3]
J. D. Caldwell,; I. Aharonovich,; G. Cassabois,; J. H. Edgar,; B. Gil,; D. N. Basov, Photonics with hexagonal boron nitride. Nat. Rev. Mater. 2019, 4, 552-567.
[4]
Z. Y. Cai,; B. L. Liu,; X. L. Zou,; H. M. Cheng, Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091-6133.
[5]
H. W. Liu,; K. Hu,; D. F. Yan,; R. Chen,; Y. Q. Zou,; H. B. Liu,; S. Y. Wang, Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Adv. Mater. 2018, 30, 1800295.
[6]
B. L. Liu,; M. Köpf,; A. Abbas,; X. M. Wang,; Q. S. Guo,; Y. C. Jia,; F. N. Xia,; R. Weihrich,; F. Bachhuber,; F. Pielnhofer, et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 2015, 27, 4423-4429.
[7]
M. Q. Liu,; S. M. Feng,; Y. Hou,; S. L. Zhao,; L. Tang,; J. M. Liu,; F. Wang,; B. L. Liu, High yield growth and doping of black phosphorus with tunable electronic properties. Mater. Today 2020, 36, 91-101.
[8]
Y. Gogotsi,; B. Anasori, The rise of MXenes. ACS Nano 2019, 13, 8491-8494.
[9]
Z. Q. Wang,; T. Y. Lü,; H. Q. Wang,; Y. P. Feng,; J. C. Zheng, Review of borophene and its potential applications. Front. Phys. 2019, 14, 33403.
[10]
M. P. Browne,; Z. Sofer,; M. Pumera, Layered and two dimensional metal oxides for electrochemical energy conversion. Energy Environ. Sci. 2019, 12, 41-58.
[11]
J. F. Yu,; Q. Wang,; D. O'Hare,; L. Y. Sun, Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 2017, 46, 5950-5974.
[12]
X. K. Cai,; Y. T. Luo,; B. L. Liu,; H. M. Cheng, Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 2018, 47, 6224ation.
[13]
H. J. Jiang,; L. Zheng,; Z. Liu,; X. W. Wang, Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat, in press, .
[14]
C. Anichini,; W. Czepa,; D. Pakulski,; A. Aliprandi,; A. Ciesielski,; P. Samorì, Chemical sensing with 2D materials. Chem. Soc. Rev. 2018, 47, 4860-4908.
[15]
M. Q. Ning,; M. M. Lu,; J. B. Li,; Z. Chen,; Y. K. Dou,; C. Z. Wang,; F. Rehman,; M. S. Cao,; H. B. Jin, Two-dimensional nanosheets of MoS2: A promising material with high dielectric properties and microwave absorption performance. Nanoscale 2015, 7, 15734-15740.
[16]
J. N. Coleman,; M. Lotya,; A. O'Neill,; S. D. Bergin,; P. J. King,; U. Khan,; K. Young,; A. Gaucher,; S. De,; R. J. Smith, et al. Two- dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.
[17]
D. Lee,; B. Lee,; K. H. Park,; H. J. Ryu,; S. Jeon,; S. H. Hong, Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett. 2015, 15, 1238-1244.
[18]
Z. Y. Lin,; Y. Liu,; U. Halim,; M. N. Ding,; Y. Y. Liu,; Y. L. Wang,; C. C. Jia,; P. Chen,; X. D. Duan,; C. Wang, et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254-258.
[19]
Y. M. Xue,; P. C. Dai,; M. Zhou,; X. Wang,; A. Pakdel,; C. Zhang,; Q. H. Weng,; T. Takei,; X. W. Fu,; Z. I. Popov, et al. Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures. ACS Nano 2017, 11, 558-568.
[20]
X. F. Zhao,; A. Vashisth,; E. Prehn,; W. M. Sun,; S. A. Shah,; T. Habib,; Y. X. Chen,; Z. Y. Tan,; J. L. Lutkenhaus,; M. Radovic, et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 2019, 1, 513-526.
[21]
D. Wang,; W. W. Zhou,; R. Zhang,; J. J. Zeng,; Y. Du,; S. Qi,; C. X. Cong,; C. Y. Ding,; X. X. Huang,; G. W. Wen, et al. Mass production of large-sized, nonlayered 2D nanosheets: Their directed synthesis by a rapid “gel-blowing” strategy, and applications in Li/Na storage and catalysis. Adv. Mater. 2018, 30, 1803569.
[22]
N. Wang,; G. Yang,; H. X. Wang,; C. Z. Yan,; R. Sun,; C. P. Wong, A universal method for large-yield and high-concentration exfoliation of two-dimensional hexagonal boron nitride nanosheets. Mater. Today 2019, 27, 33-42.
[23]
K. R. Paton,; E. Varrla,; C. Backes,; R. J. Smith,; U. Khan,; A. O’Neill,; C. Boland,; M. Lotya,; O. M. Istrate,; P. King, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624-630.
[24]
A. G. Kelly,; V. Vega-Mayoral,; J. B. Boland,; J. N. Coleman, Whiskey- phase exfoliation: Exfoliation and printing of nanosheets using Irish whiskey. 2D Mater. 2019, 6, 045036.
[25]
C. Zhang,; J. Y. Tan; Y. K. Pan,; X. K. Cai,; X. L. Zou,; H. M. Cheng,; B. L. Liu Mass production of 2D materials by intermediate-assisted grinding exfoliation. Natl. Sci. Rev. 2020, 7, 324-332.
[26]
D. Shi,; M. Z. Yang,; B. Chang,; Z. Z. Ai,; K. Zhang,; Y. L. Shao,; S. Z. Wang,; Y. Z. Wu,; X. P. Hao, Ultrasonic-ball milling: A novel strategy to prepare large-size ultrathin 2D materials. Small 2020, 16, 1906734.
[27]
Z. Cui,; H. Chu,; S. P. Gao,; Y. Pei,; J. Ji,; Y. C. Ge,; P. Dong,; P. M. Ajayan,; J. F. Shen,; M. X. Ye, Large-scale controlled synthesis of porous two-dimensional nanosheets for the hydrogen evolution reaction through a chemical pathway. Nanoscale 2018, 10, 6168-6176.
[28]
S. Yang,; K. Zhang,; A. G. Ricciardulli,; P. P. Zhang,; Z. Q. Liao,; M. R. Lohe,; E. Zschech,; P. W. M. Blom,; W. Pisula,; K. Mullen, et al. A delamination strategy for thinly layered defect-free high-mobility black phosphorus flakes. Angew. Chem., Int. Ed. 2018, 57, 4677-4681.
[29]
Y. H. Huan,; J. P. Shi,; X. L. Zou,; Y. Gong,; C. Y. Xie,; Z. J. Yang,; Z. P. Zhang,; Y. Gao,; Y. P. Shi,; M. H. Li, et al. Scalable production of two-dimensional metallic transition metal dichalcogenide nanosheet powders using NaCl templates toward electrocatalytic applications. J. Am. Chem. Soc. 2019, 141, 18694-18703.
[30]
Z. M. Hu,; X. Xiao,; H. Y. Jin,; T. Q. Li,; M. Chen,; Z. Liang,; Z. F. Guo,; J. Li,; J. Wan,; L. Huang, et al. Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat. Commun. 2017, 8, 15630.
[31]
S. H. Chen,; R. Z. Xu,; J. M. Liu,; X. L. Zou,; L. Qiu,; F. Y. Kang,; B. L. Liu,; H. M. Cheng, Simultaneous production and functionalization of boron nitride nanosheets by sugar-assisted mechanochemical exfoliation. Adv. Mater. 2019, 31, 1804810.
[32]
A. G. Kelly,; T. Hallam,; C. Backes,; A. Harvey,; A. S. Esmaeily,; I. Godwin,; J. Coelho,; V. Nicolosi,; J. Lauth,; A. Kulkarni, et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 2017, 356, 69-73.
[33]
M. I. Kairi,; S. Dayou,; N. I. Kairi,; S. A. Bakar,; B. Vigolo,; A. R. Mohamed, Toward high production of graphene flakes—A review on recent developments in their synthesis methods and scalability. J. Mater. Chem. A 2018, 6, 15010-15026.
[34]
S. Witomska,; T. Leydecker,; A. Ciesielski,; P. Samorì, Production and patterning of liquid phase-exfoliated 2D sheets for applications in optoelectronics. Adv. Funct. Mater. 2019, 29, 1901126.
[35]
J. Halim,; S. Kota,; M. R. Lukatskaya,; M. Naguib,; M. Q. Zhao,; E. J. Moon,; J. Pitock,; J. Nanda,; S. J. May,; Y. Gogotsi, et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118-3127.
[36]
C. Moore,; D. Movia,; R. J. Smith,; D. Hanlon,; F. Lebre,; E. C. Lavelle,; H. J. Byrne,; J. N. Coleman,; Y. Volkov,; J. McIntyre, Industrial grade 2D molybdenum disulphide (MoS2): An in vitro exploration of the impact on cellular uptake, cytotoxicity, and inflammation. 2D Mater. 2017, 4, 025065.
[37]
D. Hanlon,; C. Backes,; E. Doherty,; C. S. Cucinotta,; N. C. Berner,; C. Boland,; K. Lee,; A. Harvey,; P. Lynch,; Z. Gholamvand, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563.
[38]
J. L. Lang,; B. Ding,; S. Zhang,; H. X. Su,; B. H. Ge,; L. H. Qi,; H. J. Gao,; X. Y. Li,; Q. Y. Li,; H. Wu, Scalable synthesis of 2D Si nanosheets. Adv. Mater. 2017, 29, 1701777.
[39]
M. Q. Yang,; Y. J. Xu,; W. H. Lu,; K. Y. Zeng,; H. Zhu,; Q. H. Xu,; G. W. Ho, Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nat. Commun. 2017, 8, 14224.
[40]
J. Kang,; S. A. Wells,; J. D. Wood,; J. H. Lee,; X. L. Liu,; C. R. Ryder,; J. Zhu,; J. R. Guest,; C. A. Husko,; M. C. Hersam, Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. USA 2016, 113, 11688-11693.
[41]
H. L. Li,; L. Jing,; W. W. Liu,; J. J. Lin,; R. Y. Tay,; S. H. Tsang,; E. H. T. Teo, Scalable production of few-layer boron sheets by liquid- phase exfoliation and their superior supercapacitive performance. ACS Nano 2018, 12, 1262-1272.
[42]
L. Chen,; G. M. Zhou,; Z. B. Liu,; X. M. Ma,; J. Chen,; Z. Y. Zhang,; X. L. Ma,; F. Li,; H. M. Cheng,; W. C. Ren, Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 2016, 28, 510-517.
[43]
S. Biccai,; S. Barwich,; D. Boland,; A. Harvey,; D. Hanlon,; N. McEvoy,; J. N. Coleman, Exfoliation of 2D materials by high shear mixing. 2D Mater. 2018, 6, 015008.
[44]
Q. K. Zhang,; Y. N. Liu,; J. W. Lai,; S. M. Qi,; C. H. An,; Y. Lu,; X. X. Duan,; W. Pang,; D. H. Zhang,; D. Sun, et al. Liquid phase mass production of air-stable black phosphorus/phospholipids nanocomposite with ultralow tunneling barrier. 2D Mater. 2018, 5, 025012.
[45]
E. Varrla,; C. Backes,; K. R. Paton,; A. Harvey,; Z. Gholamvand,; J. McCauley,; J. N. Coleman, Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem. Mater. 2015, 27, 1129-1139.
[46]
Z. Hu,; Z. X. Tai,; Q. N. Liu,; S. W. Wang,; H. L. Jin,; S. Wang,; W. H. Lai,; M. Z. Chen,; L. Li,; L. N. Chen, et al. Ultrathin 2D TiS2 nanosheets for high capacity and long-life sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803210.
[47]
C. Knieke,; A. Berger,; M. Voigt,; R. N. K. Taylor,; J. Röhrl,; W. Peukert, Scalable production of graphene sheets by mechanical delamination. Carbon 2010, 48, 3196-3204.
[48]
W. F. Zhao,; M. Fang,; F. R. Wu,; H. Wu,; L. W. Wang,; G. H. Chen, Preparation of graphene by exfoliation of graphite using wet ball milling. J. Mater. Chem. 2010, 20, 5817-5819.
[49]
; L. H. Li,; A. M. Glushenkov,; S. K. Hait,; P. Hodgson,; Y. Chen, High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil. Sci. Rep. 2015, 4, 7288.
[50]
W. W. Lei,; N. V. Mochalin,; D. Liu,; S. Qin,; Y. Gogotsi,; Y. Chen, Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 2015, 6, 8849.
[51]
J. Huang,; Y. Li,; R. K. Huang,; C. T. He,; L. Gong,; Q. Hu,; L. S. Wang,; Y. T. Xu,; X. Y. Tian,; S. Y. Liu, et al. Electrochemical exfoliation of pillared-layer metal-organic framework to boost the oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 4632-4636.
[52]
Z. D. Huang,; H. S. Hou,; Y. Zhang,; C. Wang,; X. Q. Qiu,; X. B. Ji, Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode. Adv. Mater. 2017, 29, 1702372.
[53]
S. Yang,; P. P. Zhang,; S. A. Nia,; X. L. Feng, Emerging 2D materials produced via electrochemistry. Adv. Mater. 2020, 32, 1907857.
[54]
Z. Y. Zeng,; T. Sun,; J. X. Zhu.; X. Huang,; Z. Y. Yin,; G. Lu,; Z. X. Fan,; Q. Y. Yan,; H. H. Hng,; H. Zhang, An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem., Int. Ed. 2012, 51, 9052-9056.
[55]
J. C. Si,; Q. Zheng,; H. L. Chen,; C. J. Lei,; Y. G. Suo,; B. Yang,; Z. G. Zhang,; Z. J. Li,; L. C. Lei,; Y. Hou, et al. Scalable production of few-layer niobium disulfide nanosheets via electrochemical exfoliation for energy-efficient hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 13205-13213.
[56]
S. Yang,; P. P. Zhang,; F. X. Wang,; A. G. Ricciardulli,; M. R. Lohe,; P. W. M. Blom,; X. L. Feng, Fluoride-free synthesis of two- dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem., Int. Ed. 2018, 57, 15491-15495.
[57]
F. Han,; S. J. Luo,; L. Y. Xie,; J. J. Zhu,; W. Wei,; X. Chen,; F. W. Liu,; W. Chen,; J. L. Zhao,; L. Dong, et al. Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation. ACS Appl. Mater. Interfaces 2019, 11, 8443-8452.
[58]
R. Rizvi,; E. P. Nguyen,; M. D. Kowal,; W. H. Mak,; S. Rasel,; M. A. Islam,; A. Abdelaal,; A. S. Joshi,; S. Zekriardehani,; M. R. Coleman, et al. High-throughput continuous production of shear-exfoliated 2D layered materials using compressible flows. Adv. Mater. 2018, 30, 1800200.
[59]
J. D. Cain,; A. Azizi,; K. Maleski,; B. Anasori,; E. C. Glazer,; P. Y. Kim,; Y. Gogotsi,; B. A. Helms,; T. P. Russell,; A. Zettl, Sculpting liquids with two-dimensional materials: The assembly of Ti3C2Tx MXene sheets at liquid-liquid interfaces. ACS Nano 2019, 13, 12385-12392.
[60]
C. E. Shuck,; A. Sarycheva,; M. Anayee,; A. Levitt,; Y. Z. Zhu,; S. Uzun,; V. Balitskiy,; V. Zahorodna,; O. Gogotsi,; Y. Gogotsi, Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 2020, 22, 1901241.
[61]
M. Naguib,; M. Kurtoglu,; V. Presser,; J. Lu,; J. J. Niu,; M. Heon,; L. Hultman,; Y. Gogotsi,; M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-4253.
[62]
Y. L. Qin,; Z. Q. Wang,; N. Y. Liu,; Y. Sun,; D. X. Han,; Y. Liu,; L. Niu,; Z. H. Kang, High-yield fabrication of Ti3C2Tx MXene quantum dots and their electrochemiluminescence behavior. Nanoscale 2018, 10, 14000-14004.
[63]
X. Tang,; D. Zhou,; P. Li,; X. Guo,; B. Sun,; H. Liu,; K. Yan,; Y. Gogotsi,; G. X. Wang, MXene-based dendrite-free potassium metal batteries. Adv. Mater. 2020, 32, 1906739.
[64]
T. Yun,; H. Kim,; A. Iqbal,; Y. S. Cho,; G. S. Lee,; M. K. Kim,; S. J. Kim,; D. Kim,; Y. Gogotsi,; S. O. Kim, et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 2020, 32, 1906769.
[65]
X. W. Huang,; P. Y. Wu, A facile, high-yield, and freeze-and-thaw- assisted approach to fabricate mxene with plentiful wrinkles and its application in on-chip micro-supercapacitors. Adv. Funct. Mater. 2020, 30, 1910048.
[66]
J. Y. Jiang,; Z. H. Shen,; X. K. Cai,; J. F. Qian,; Z. K. Dan,; Y. H. Lin,; B. L. Liu,; C. W. Nan,; L. Q. Chen,; Y. Shen, Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Adv. Energy Mater. 2019, 9, 1803411.
[67]
C. L. Tan,; H. Zhang, Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 2015, 6, 7873.
[68]
Z. F. Huang,; A. N. Zhou,; J. F. Wu,; Y. Q. Chen,; X. L. Lan,; H. Bai,; L. Li, Bottom-up preparation of ultrathin 2D aluminum oxide nanosheets by duplicating graphene oxide. Adv. Mater. 2016, 28, 1703-1708.
[69]
X. Xiao,; H. M. Yu,; H. Y. Jin,; M. H. Wu,; Y. S. Fang,; J. Y. Sun,; Z. M. Hu,; T. Q. Li,; J. B. Wu,; L. Huang, et al. Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 2017, 11, 2180-2186.
[70]
H. R. Jin,; Z. M. Hu,; T. Q. Li,; L. Huang,; J. Wan,; G. B. Xue,; J. Zhou, Mass production of high-quality transition metal dichalcogenides nanosheets via a molten salt method. Adv. Funct. Mater. 2019, 29, 1900649.
[71]
Y. W. Tan,; P. Liu,; L. Y. Chen,; W. T. Cong,; Y. Ito,; J. H. Han,; X. W. Guo,; Z. Tang,; T. Fujita,; A. Hirata, et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 2014, 26, 8023-8028.
[72]
J. Yin,; X. M. Li,; J. X. Zhou,; W. L. Guo, Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity. Nano Lett. 2013, 13, 3232-3236.
[73]
S. S. Li,; Y. C. Lin,; W. Zhao,; J. Wu,; Z. Wang,; Z. H. Hu,; Y. D. Shen,; D. M. Tang,; J. Y. Wang,; Q. Zhang, et al. Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 2018, 17, 535-542.
[74]
H. L. Cao,; X. F. Zhou,; C. Zheng,; Z. P. Liu, Two-dimensional porous micro/nano metal oxides templated by graphene oxide. ACS Appl. Mater. Interfaces 2015, 7, 11984-11990.
[75]
Y. H. Dou,; T. Liao,; Z. Q. Ma,; D. L. Tian,; Q. N. Liu,; F. Xiao,; Z. Q. Sun,; J. Ho Kim,; S. X. Dou, Graphene-like holey Co3O4 nanosheets as a highly efficient catalyst for oxygen evolution reaction. Nano Energy 2016, 30, 267-275.
[76]
X. Xiao,; H. B. Song,; S. Z. Lin,; Y. Zhou,; X. J. Zhan,; Z. M. Hu,; Q. Zhang,; J. Y. Sun,; B. Yang,; T. Q. Li, et al. Scalable salt- templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 2016, 7, 11296.
[77]
T. Q. Li,; H. R. Jin,; Z. Liang,; L. Huang,; Y. C. Lu,; H. M. Yu,; Z. M. Hu,; J. B. Wu,; B. Y. Xia,; G. Feng, et al. Synthesis of single crystalline two-dimensional transition-metal phosphides via a salt-templating method. Nanoscale 2018, 10, 6844-6849.
[78]
H. Q. Zhou,; Y. M. Wang,; R. He,; F. Yu,; J. Y. Sun,; F. Wang,; Y. C. Lan,; Z. F. Ren,; S. Chen, One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: An efficient 3D electrode for hydrogen evolution reaction. Nano Energy 2016, 20, 29-36.
[79]
Y. T. Luo,; L. Tang,; U. Khan,; Q. M. Yu,; H. M. Cheng,; X. L. Zou,; B. L. Liu, Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 2019, 10, 269.
[80]
A. L. Yan,; X. C. Wang,; J. P. Cheng, Research progress of NiMn layered double hydroxides for supercapacitors: A review. Nanomaterials 2018, 8, 747.
[81]
J. B. Wu,; Y. Lin,; R. F. Qin,; Y. X. Zeng,; X. H. Lu, Scalable production of the cobaltous hydroxide nanosheet electrode for ultrahigh-energy and stable aqueous cobalt-zinc batteries. ACS Sustainable Chem. Eng. 2020, 8, 1464-1470.
[82]
I. H. Tseng,; M. H. Tsai,; C. W. Chung, Flexible and transparent polyimide films containing two-dimensional alumina nanosheets templated by graphene oxide for improved barrier property. ACS Appl. Mater. Interfaces 2014, 6, 13098-13105.
[83]
B. Singh,; V. Polshettiwar, Solution-phase synthesis of two-dimensional silica nanosheets using soft templates and their applications in CO2 capture. Nanoscale 2019, 11, 5365-5376.
[84]
L. F. Wang,; C. Song,; Y. Shi,; L. Y. Dang,; Y. Jin,; H. Jiang,; Q. Y. Lu,; F. Gao, Generalized low-temperature fabrication of scalable multi-type two-dimensional nanosheets with a green soft template. Chem.—Eur. J. 2016, 22, 5575-5582.
[85]
Z. W. Seh,; J. Kibsgaard,; C. F. Dickens,; I. Chorkendorff,; J. K. Nørskov,; T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
[86]
Q. M. Yu,; Y. T. Luo,; A. Mahmood,; B. L. Liu,; H. M. Cheng, Engineering two-dimensional materials and their heterostructures as high-performance electrocatalysts. Electrochem. Energy Rev. 2019, 2, 373-394.
[87]
J. D. Benck,; T. R. Hellstern,; J. Kibsgaard,; P. Chakthranont,; T. F. Jaramillo, Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957-3971.
[88]
Y. Y. Liu,; J. J. Wu,; K. P. Hackenberg,; J. Zhang,; Y. M. Wang,; Y. C. Yang,; K. Keyshar,; J. Gu,; T. Ogitsu,; R. Vajtai, et al. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2017, 2, 17127.
[89]
H. Y. Li,; X. F. Jia,; Q. Zhang,; X. Wang, Metallic transition-metal dichalcogenide nanocatalysts for energy conversion. Chem 2018, 4, 1510-1537.
[90]
Y. T. Luo,; X. Li,; X. K. Cai,; X. L. Zou,; F. Y. Kang,; H. M. Cheng,; B. L. Liu, Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 2018, 12, 4565-4573.
[91]
Q. M. Yu,; Y. T. Luo,; S. Y. Qiu,; Q. Y. Li,; Z. Y. Cai,; Z. Y. Zhang,; J. M. Liu,; C. H. Sun,; B. L. Liu, Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering. ACS Nano 2019, 13, 11874-11881.
[92]
L. Najafi,; S. Bellani,; R. Oropesa-Nuñez,; A. Ansaldo,; M. Prato,; A. E. Del Rio Castillo,; F. Bonaccorso, Engineered MoSe2-based heterostructures for efficient electrochemical hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1703212.
[93]
X. H. Wu,; Z. Y. Wang,; M. Z. Yu,; L. Y. Xiu,; J. S. Qiu, Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 2017, 29, 1607017.
[94]
Z. M. Zheng,; L. L. Lin,; S. G. Mo,; D. H. Ou,; J. Tao,; R. X. Qin,; X. L. Fang,; N. F. Zheng, Economizing production of diverse 2D layered metal hydroxides for efficient overall water splitting. Small 2018, 14, 1800759.
[95]
J. M. Luo,; W. K. Zhang,; H. D. Yuan,; C. B. Jin,; L. Y. Zhang,; H. Huang,; C. Liang,; Y. Xia,; J. Zhang,; Y. P. Gan, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 2017, 11, 2459-2469.
[96]
C. Chen,; X. Q. Xie,; B. Anasori,; A. Sarycheva,; T. Makaryan,; M. Q. Zhao,; P. Urbankowski,; L. Miao,; J. J. Jiang,; Y. Gogotsi, MoS2-on- MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 130, 1864-1868.
[97]
H. Tang,; W. L. Li,; L. M. Pan,; C. P. Cullen,; Y. Liu,; A. Pakdel,; D. H. Long,; J. Yang,; N. McEvoy,; G. S. Duesberg, et al. In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 2018, 5, 1800502.
[98]
Y. T. Liu,; P. Zhang,; N. Sun,; B. Anasori,; Q. Z. Zhu,; H. Liu,; Y. Gogotsi,; B. Xu, Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 2018, 30, 1707334.
[99]
Y. P. Liu,; X. Y. He,; D. Hanlon,; A. Harvey,; J. N. Coleman,; Y. G. Li, Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 2016, 10, 8821-8828.
[100]
P. Li,; J. Y. Jeong,; B. J. Jin,; K. Zhang,; J. H. Park, Vertically oriented MoS2 with spatially controlled geometry on nitrogenous graphene sheets for high-performance sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1703300.
[101]
J. M. Ge,; L. Fan,; J. Wang,; Q. F. Zhang,; Z. M. Liu,; E. J. Zhang,; Q. Liu,; X. Z. Yu,; B. A. Lu, MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.
[102]
X. Fan,; R. R. Gaddam,; N. A. Kumar,; X. S. Zhao, A hybrid Mg2+/Li+ battery based on interlayer-expanded MoS2/graphene cathode. Adv. Energy Mater. 2017, 7, 1700317.
[103]
L. Jiao,; C. Zhang,; C. N. Geng,; S. C. Wu,; H. Li,; W. Lv,; Y. Tao,; Z. J. Chen,; G. M. Zhou,; J. Li, et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900219.
[104]
Y. L. Zhang,; Z. J. Mu,; C. Yang,; Z. K. Xu,; S. Zhang,; X. Y. Zhang,; Y. J. Li,; J. P. Lai,; Z. H. Sun,; Y. Yang, et al. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium- sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707578.
[105]
Z. B. Xiao,; Z. L. Li,; P. Y. Li,; X. P. Meng,; R. H. Wang, Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy- density lithium-sulfur batteries. ACS Nano 2019, 13, 3608-3617.
[106]
C. F. Zhang,; M. P. Kremer,; A. Seral-Ascaso,; S. H. Park,; N. McEvoy,; B. Anasori,; Y. Gogotsi,; V. Nicolosi, Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 2018, 28, 1705506.
[107]
C. F. Zhang,; L. McKeon,; M. P. Kremer,; S. H. Park,; O. Ronan,; A. Seral-Ascaso,; S. Barwich,; C. Ó. Coileain,; N. McEvoy,; H. C. Nerl, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019, 10, 1795.
[108]
X. J. Wu,; Y. J. Xu,; Y. Hu,; G. Wu,; H. Y. Cheng,; Q. Yu,; K. Zhang,; W. Chen,; S. Chen, Microfluidic-spinning construction of black-phosphorus-hybrid microfibres for non-woven fabrics toward a high energy density flexible supercapacitor. Nat. Commun. 2018, 9, 4573.
[109]
Y. Guo,; M. J. Zhong,; Z. W. Fang,; P. B. Wan,; G. H. Yu, A Wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 2019, 19, 1143-1150.
[110]
Y. N. Ma,; N. S. Liu,; L. Y. Li,; X. K. Hu,; Z. G. Zou,; J. B. Wang,; S. J. Luo,; Y. H. Gao, A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 2017, 8, 1207.
[111]
Y. Z. Zhang,; K. H. Lee,; D. H. Anjum,; R. Sougrat,; Q. Jiang,; H. Kim,; H. N. Alshareef, MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 2018, 4, eaat0098.
[112]
S. J. Kim,; S. Mondal,; B. K. Min,; C. G. Choi, Highly sensitive and flexible strain-pressure sensors with cracked paddy-shaped MoS2/graphene foam/ecoflex hybrid nanostructures. ACS Appl. Mater. Interfaces 2018, 10, 36377-36384.
[113]
H. Liao,; X. L. Guo,; P. B. Wan,; G. H. Yu, Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 2019, 29, 1904507.
[114]
H. An,; T. Habib,; S. Shah,; H. L. Gao,; M. Radovic,; M. J. Green,; J. L. Lutkenhaus, Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 2018, 4, eaaq0118.
[115]
Y. Yang,; L. J. Shi,; Z. R. Cao,; R. R. Wang,; J. Sun, Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle-nanosheet hybrid network. Adv. Funct. Mater. 2019, 29, 1807882.
[116]
Y. C. Cai,; J. Shen,; G. Ge,; Y. Z. Zhang,; W. Q. Jin,; W. Huang,; J. J. Shao,; J. Yang,; X. C. Dong, Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 2018, 12, 56-62.
[117]
Y. N. Ma,; Y. Yue,; H. Zhang,; F. Cheng,; W. Q. Zhao,; J. Y. Rao,; S. J. Luo,; J. Wang,; X. L. Jiang,; Z. T. Liu, et al. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 2018, 12, 3209-3216.
[118]
S. Seyedin,; S. Uzun,; A. Levitt,; B. Anasori,; G. Dion,; Y. Gogotsi,; J. M. Razal, MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater. 2020, 30, 1910504.
[119]
S. J. Kim,; H. J. Koh,; C. E. Ren,; O. Kwon,; K. Maleski,; S. Y. Cho,; B. Anasori,; C. K. Kim,; Y. K. Choi,; J. Kim, et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 2018, 12, 986-993.
[120]
B. Martín-García,; D. Spirito,; S. Bellani,; M. Prato,; V. Romano,; A. Polovitsyn,; R. Brescia,; R. Oropesa-Nuñez,; L. Najafi,; A. Ansaldo, et al. Extending the colloidal transition metal dichalcogenide library to ReS2 nanosheets for application in gas sensing and electrocatalysis. Small 2019, 15, 1904670.
[121]
W. J. Yan,; A. Harley-Trochimczyk,; H. Long,; L. Chan,; T. Pham,; M. Hu,; Y. X. Qin,; A. Zettl,; C. Carraro,; M. A. Worsley, et al. Conductometric gas sensing behavior of WS2 aerogel. FlatChem 2017, 5, 1-8.
[122]
P. Yasaei,; A. Behranginia,; T. Foroozan,; M. Asadi,; K. Kim,; F. Khalili-Araghi,; A. Salehi-Khojin, Stable and selective humidity sensing using stacked black phosphorus flakes. ACS Nano 2015, 9, 9898-9905.
[123]
L. X. Liu,; W. Chen,; H. B. Zhang,; Q. W. Wang,; F. L. Guan,; Z. Z. Yu, Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197.
[124]
M. B. Erande,; M. S. Pawar,; D. J. Late, Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 11548-11556.
[125]
H. Y. Guo,; C. Y. Lan,; Z. F. Zhou,; P. H. Sun,; D. P. Wei,; C. Li, Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 2017, 9, 6246-6253.
[126]
M. Mojtabavi,; A. VahidMohammadi,; W. T. Liang,; M. Beidaghi,; M. Wanunu, Single-molecule sensing using nanopores in two- dimensional transition metal carbide (MXene) membranes. ACS Nano 2019, 13, 3042-3053.
[127]
S. Y. Cho,; Y. Lee,; H. J. Koh,; H. Jung,; J. S. Kim,; H. W. Yoo,; J. Kim,; H. T. Jung, Superior chemical sensing performance of black phosphorus: Comparison with MoS2 and graphene. Adv. Mater. 2016, 28, 7020-7028.
[128]
B. Soundiraraju,; B. K. George, Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 2017, 11, 8892-8900.
[129]
P. Ranjan,; T. K. Sahu,; R. Bhushan,; S. S. Yamijala,; D. J. Late,; P. Kumar,; A. Vinu, Freestanding borophene and its hybrids. Adv. Mater. 2019, 31, 1900353.
[130]
M. S. Cao,; Y. Z. Cai,; P. He,; J. C. Shu,; W. Q. Cao,; J. Yuan, 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265-1302.
[131]
F. Shahzad,; M. Alhabeb,; C. B. Hatter,; B. Anasori,; S. M. Hong,; C. M. Koo,; Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137-1140.
[132]
Z. P. Chen,; C. Xu,; C. Q. Ma,; W. C. Ren,; H. M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296-1300.
[133]
D. X. Yan,; H. Pang,; B. Li,; R. Vajtai,; L. Xu,; P. G. Ren,; J. H. Wang,; Z. M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559-566.
[134]
G. J. Li,; N. Amer,; H. A. Hafez,; S. H. Huang,; D. Turchinovich,; V. N. Mochalin,; F. A. Hegmann,; L. V. Titova, Dynamical control over terahertz electromagnetic interference shielding with 2D Ti3C2Ty MXene by ultrafast optical pulses. Nano Lett. 2020, 20, 636-643.
[135]
P. A. Zong,; D. Yoo,; P. Zhang,; Y. F. Wang,; Y. J. Huang,; S. J. Yin,; J. Liang,; Y. L. Wang,; K. Koumoto,; C. L. Wan, Flexible foil of hybrid TaS2/organic superlattice: Fabrication and electrical properties. Small 2020, 16, 1901901.
[136]
M. Vural,; A. Pena-Francesch,; J. Bars-Pomes,; H. Jung,; H. Gudapati,; C. B. Hatter,; B. D. Allen,; B. Anasori,; I. T. Ozbolat,; Y. Gogotsi, et al. Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv. Funct. Mater. 2018, 28, 1801972.
[137]
H. W. Chen,; Y. Y. Wen,; Y. Y. Qi,; Q. Zhao,; L. T. Qu,; C. Li, Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 2020, 30, 1906996.
[138]
Y. Li,; X. Tian,; S. P. Gao,; L. Jing,; K. R. Li,; H. T. Yang,; F. F. Fu,; J. Y. Lee,; Y. X. Guo,; J. S. Ho, et al. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 2020, 30, 1907451.
[139]
M. Q. Zhao,; N. Trainor,; C. E. Ren,; M. Torelli,; B. Anasori,; Y. Gogotsi, Scalable manufacturing of large and flexible sheets of MXene/graphene heterostructures. Adv. Mater. Technol. 2019, 4, 1800639.
[140]
P. Sambyal,; A. Iqbal,; J. Hong,; H. Kim,; M. K. Kim,; S. M. Hong,; M. K. Han,; Y. Gogotsi,; C. M. Koo, Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2019, 11, 38046-38054.
[141]
J. Liu,; Z. S. Liu,; H. B. Zhang,; W. Chen,; Z. F. Zhao,; Q. W. Wang,; Z. Z. Yu, Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 2020, 6, 1901094.
[142]
Y. Q. Zhu,; T. Sekine,; Y. H. Li,; M. W. Fay,; Y. M. Zhao,; C. H. Patrick Poa,; W. X. Wang,; M. J. Roe,; P. D. Brown,; N. Fleischer, et al. Shock-absorbing and failure mechanisms of WS2 and MoS2 nanoparticles with fullerene-like structures under shock wave pressure. J. Am. Chem. Soc. 2005, 127, 16263-16272.
[143]
W. L. Feng,; H. Luo,; Y. Wang,; S. F. Zeng,; L. W. Deng,; X. S. Zhou,; H. B. Zhang,; S. M. Peng, Ti3C2 MXene: A promising microwave absorbing material. RSC Adv. 2018, 8, 2398-2403.
[144]
L. L. Liu,; S. Zhang,; F. Yan,; C. Y. Li,; C. L. Zhu,; X. T. Zhang,; Y. J. Chen, Three-dimensional hierarchical MoS2 nanosheets/ultralong N-doped carbon nanotubes as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2018, 10, 14108-14115.
[145]
Y. J. Yu,; L. G. Ma,; P. Cai,; R. D. Zhong,; C. Ye,; J. Shen,; G. D. Gu,; H. X. Chen,; Y. B. Zhang, High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 2019, 575, 156etempe
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 March 2020
Revised: 20 May 2020
Accepted: 21 May 2020
Published: 21 June 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (Nos. 51722206, 51920105002, 51991340, and 51991343), Guangdong Innovative and Entrepreneurial Research Team Program (No. 2017ZT07C341), the Bureau of Industry and Information Technology of Shenzhen for the "2017 Graphene Manufacturing Innovation Center Project" (No. 201901171523), and the Development and Reform Commission of Shenzhen Municipality for the development of the "Low-Dimensional Materials and Devices" discipline.

Return