Journal Home > Volume 13 , Issue 9

In this work, high quality uniform and dense nanostructured cobalt-doped zinc oxide (ZnO:Co) films were used as electron-transport layers in CH3NH3PbI3-based planar heterojunction perovskite solar cells (PSCs) on a flexible conductive substrate. Highly photo catalytically active ZnO:Co films were prepared by a low cost hydrothermal process using the aqueous solution of zinc nitrate hexahydrate, hexamethylenete-tramine and cobalt (II) nitrate hexahydrate. ZnO:Co films were deposited on indium tin oxide (ITO) covered polyethylene terephthalate (PET) flexible substrates. The growth was controlled by maintaining the autoclave temperature at 150 °C for 4 h. The CH3NH3PbI3 layer was deposited on the ZnO:Co films by spin coating. Spiro-OMeTAD was employed as a hole-transporting material. The structural, morphology and optical properties of the grown ZnO nanostructures were characterized by X-ray diffraction (XRD), field-emission scanning electron microcopy (FESEM), energy-dispersive X-ray spectrometry (EDX), ultraviolet-visible (UV-Vis) and photoelectrochemical propriety. XRD spectra showed that both ZnO and ZnO:Co nanorods had a hexagonal wurtzite structure with a strong preferred orientation along the (002) plane. The surface morphology of films was studied by FESEM and showed that both the pure and Co-doped ZnO films had hexagonal shaped nanorods. In the steady state, the ZnO electrode gave a photocurrent density of about 1.5 mA/cm2. However, the Co-doped ZnO electrode showed a photocurrent density of about 6 mA/cm2, which is 4-fold higher than that of the ZnO electrode. Based on the above synthesized Co-doped ZnO films, the photovoltaic performance of PSCs was studied. The Co-doped ZnO layers had a significant impact on the photovoltaic conversion efficiency (PCE) of the PSCs. The latter was attributed to an efficient charge separation and transport due to the better coverage of perovskite on the nanostructured Co-doped ZnO films. As a result, the measured PCE under standard solar conditions (A M 1.5G, 100 mW/cm2) reached 7%. SCAPS-1D simulation was also performed to analyze the effect of the co-doped ZnO thin film on the corresponding solar cell performances.


menu
Abstract
Full text
Outline
About this article

High performance novel flexible perovskite solar cell based on a low-cost-processed ZnO:Co electron transport layer

Show Author's information Feriel Bouhjar1,2,4( )Lotfi Derbali3,4Bernabé Marí1
Institut de Disseny i Fabricació (IDF) - Departament de Física Aplicada, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
Photovoltaic Laboratory, Research and Technology Centre of Energy (CRTEn), Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif, Tunisia
Laboratory of Semiconductors, Nanostructures and Advanced Technology, Research and Technology Center of Energy (CRTEn), Borj-Cedria Science and Technology Park, BP 95,2050 Hammam-Lif, Tunisia
Department of Physics, College of Sciences and Humanities, Al Quwayiyah, Shaqraa University, Al Quwayiyah, Saudi Arabia

Abstract

In this work, high quality uniform and dense nanostructured cobalt-doped zinc oxide (ZnO:Co) films were used as electron-transport layers in CH3NH3PbI3-based planar heterojunction perovskite solar cells (PSCs) on a flexible conductive substrate. Highly photo catalytically active ZnO:Co films were prepared by a low cost hydrothermal process using the aqueous solution of zinc nitrate hexahydrate, hexamethylenete-tramine and cobalt (II) nitrate hexahydrate. ZnO:Co films were deposited on indium tin oxide (ITO) covered polyethylene terephthalate (PET) flexible substrates. The growth was controlled by maintaining the autoclave temperature at 150 °C for 4 h. The CH3NH3PbI3 layer was deposited on the ZnO:Co films by spin coating. Spiro-OMeTAD was employed as a hole-transporting material. The structural, morphology and optical properties of the grown ZnO nanostructures were characterized by X-ray diffraction (XRD), field-emission scanning electron microcopy (FESEM), energy-dispersive X-ray spectrometry (EDX), ultraviolet-visible (UV-Vis) and photoelectrochemical propriety. XRD spectra showed that both ZnO and ZnO:Co nanorods had a hexagonal wurtzite structure with a strong preferred orientation along the (002) plane. The surface morphology of films was studied by FESEM and showed that both the pure and Co-doped ZnO films had hexagonal shaped nanorods. In the steady state, the ZnO electrode gave a photocurrent density of about 1.5 mA/cm2. However, the Co-doped ZnO electrode showed a photocurrent density of about 6 mA/cm2, which is 4-fold higher than that of the ZnO electrode. Based on the above synthesized Co-doped ZnO films, the photovoltaic performance of PSCs was studied. The Co-doped ZnO layers had a significant impact on the photovoltaic conversion efficiency (PCE) of the PSCs. The latter was attributed to an efficient charge separation and transport due to the better coverage of perovskite on the nanostructured Co-doped ZnO films. As a result, the measured PCE under standard solar conditions (A M 1.5G, 100 mW/cm2) reached 7%. SCAPS-1D simulation was also performed to analyze the effect of the co-doped ZnO thin film on the corresponding solar cell performances.

Keywords: perovskite solar cell, ZnO nanorods, hydrothermal deposition, X-ray diffraction (XRD) analysis, field-emission scanning electron microcopy (FESEM) analysis, photoelectrochemical properties

References(76)

[1]
Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T. L. et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 2014, 5, 1004-1011.
[2]
Kazim, S.; Nazeeruddin, M. K.; Grätzel, M.; Ahmad, S. Perovskite as light harvester: A game changer in photovoltaics. Angew. Chem., Int. Ed. 2014, 53, 2812-2824.
[3]
Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 2013, 6, 1739-1743.
[4]
Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967-970.
[5]
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
[6]
Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643-647.
[7]
Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395-398.
[8]
Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542-546.
[9]
Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234-1237.
[10]
Park, N. G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 2013, 4, 2423-2429.
[11]
Peng, H. T.; Sun, W. H.; Li, Y. L.; Yan, W. B.; Yu, P. R.; Zhou, H. P.; Bian, Z. Q.; Huang, C. H. High-performance cadmium sulphide-based planar perovskite solar cell and the cadmium sulphide/perovskite interfaces. J. Photonics Energy 2016, 6, 022002.
[12]
Dong, Q. S.; Shi, Y. T.; Wang, K.; Li, Y.; Wang, S. F.; Zhang, H.; Xing, Y. J.; Du, Y.; Bai, X. G.; Ma, T. L. Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J. Phys. Chem. C 2015, 119, 10212-10217.
[13]
Wu, Q. L.; Zhou, W. R.; Liu, Q.; Zhou, P. C.; Chen, T.; Lu, Y. L.; Qiao, Q. Q.; Yang, S. F. Solution-processable ionic liquid as an independent or modifying electron transport layer for high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 2016, 8, 34464-34473.
[14]
Snaith, H. J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013, 4, 3623-3630.
[15]
Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764-1769.
[16]
Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.
[17]
Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088-4093.
[18]
Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. I. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic- organic hybrid perovskite solar cells. J. Am. Chem. Soc. 2014, 136, 7837-7840.
[19]
Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295-298.
[20]
Liu, D. Y.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2014, 8, 133-138.
[21]
Dymshits, A.; Iagher, L.; Etgar, L. Parameters influencing the growth of ZnO nanowires as efficient low temperature flexible perovskite-based solar cells. Materials 2016, 9, 60.
[22]
Wang, J. T. W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander-Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J. et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 2014, 14, 724-730.
[23]
Boudjemaa, A.; Boumaza, S.; Trari, M.; Bouarab, R.; Bouguelia, A. Physical and photo-electrochemical characterizations of α-Fe2O3. Application for hydrogen production. Int. J. Hydrogen Energy 2009, 34, 4268-4274.
[24]
Carnie, M. J.; Charbonneau, C.; Davies, M. L.; Troughton, J.; Watson, T. M.; Wojciechowski, K.; Snaith, H.; Worsley, D. A. A one-step low temperature processing route for organolead halide perovskite solar cells. Chem. Commun. 2013, 49, 7893-7895.
[25]
Bouhjar, F.; Mollar, M.; Chourou, M. L.; Marí, B.; Bessaïs, B. Hydrothermal synthesis of nanostructured Cr-doped hematite with enhanced photoelectrochemical activity. Electrochim. Acta 2018, 10, 838-846.
[26]
Bouhjar, F.; Derbali, L.; Marí, B.; Bessaïs, B. Photo-deposition of cobalt-phosphate group modified hematite for efficient water splitting. Sol. Energy Mater. Sol. Cells 2019, 195, 241-249.
[27]
Bouhjar, F.; Ullah, S.; Chourou, M. L.; Mollar, M.; Marí, B.; Bessaïs, B. Electrochemical fabrication and characterization of p-CuSCN/n-Fe2O3 heterojunction devices for hydrogen production. J. Electrochem. Soc. 2017, 164, H936-H945.
[28]
Bouhjar, F.; Mollar, M.; Ullah, S.; Marí, B.; Bessaïs B. Influence of a compact α-Fe2O3 layer on the photovoltaic performance of perovskite-based solar cells. J. Electrochem. Soc. 2018, 165, H30-H38.
[29]
Bouhjar, F.; Bessaïs, B.; Marí, B. Ultrathin-layer α-Fe2O3 deposited under hematite for solar water splitting. J. Solid State Electrochem. 2018, 22, 2347-2356.
[30]
Bouhjar, F.; Derbali, L.; Marí, B.; Bessaïs, B. Electrodeposited chromium-doped α-Fe2O3 under various applied potential configurations for solar water splitting. Results Phys., in press, .
[31]
Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, C. Z. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087-4108.
[32]
Baxter, J. B.; Aydil, E. S. Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 2005, 86, 053114.
[33]
Gonzalez-Valls, I.; Lira-Cantu, M. Vertically-aligned nanostructures of ZnO for excitonic solar cells: A review. Energy Environ. Sci. 2009, 2, 19-34.
[34]
Wang, L.; Fu, W. F.; Gu, Z. W.; Fan, C. C.; Yang, X.; Li, H. Y.; Chen, H. Z. Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer. J. Mater. Chem. C 2014, 2, 9087-9090.
[35]
Son, D. Y.; Im, J. H.; Kim, H. S.; Park, N. G. 11% efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system. J. Phys. Chem. C 2014, 118, 16567-16573.
[36]
Kumar, M. H.; Yantara, N.; Dharani, S.; Graetzel, M.; Mhaisalkar, S.; Boix, P. P.; Mathews, N. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 2013, 49, 11089-11091.
[37]
Wang, H. W.; Xu, Z. J.; Yi, H.; Wei, H. G.; Guo, Z. H.; Wang, X. F. One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 2014, 7, 86-96.
[38]
Niu, H. H.; Zhang, S. W.; Ma, Q.; Qin, S. X.; Wan, L.; Xu, J. Z.; Miao, S. D. Dye-sensitized solar cells based on flower-shaped α-Fe2O3 as a photoanode and reduced graphene oxide-polyaniline composite as a counter electrode. RSC Adv. 2013, 3, 17228-17235.
[39]
Baruah, S.; Dutta, J. Effect of seeded substrates on hydrothermally grown ZnO nanorods. J. Sol-Gel Sci. Technol. 2009, 50, 456-464.
[40]
Saravanakumar, K.; Ravichandran, K. Synthesis of heavily doped nanocrystalline ZnO:Al powders using a simple soft chemical method. J. Mater. Sci. Mater. Electron. 2012, 23, 1462-1469.
[41]
Mahroug, A.; Boudjadar, S.; Hamrit, S.; Guerbous, L. Structural, optical and photocurrent properties of undoped and Al-doped ZnO thin films deposited by sol-gel spin coating technique. Mater. Lett., 2014, 134, 248-251.
[42]
Venkatachalam, S.; Iida, Y.; Kanno, Y. Preparation and characterization of Al doped ZnO thin films by PLD. Superlattices Microstruct. 2008, 44, 127-135.
[43]
Amin, G.; Asif, M. H.; Zainelabdin, A.; Zaman, S.; Nur, O.; Willander, M. Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method Share on. J. Nanomater. 2011, 2011, 5.
[44]
Lo, S. S.; Huang, D.; Tu, C. H.; Hou, C. H.; Chen, C. C. Raman scattering and band-gap variations of Al-doped ZnO nanoparticles synthesized by a chemical colloid process. J. Phys. D: Appl. Phys. 2009, 42, 095420.
[45]
Yoo, Y. Z.; Fukumura, T.; Jin, Z. W.; Hasegawa, K.; Kawasaki, M.; Ahmet, P.; Chikyow, T.; Koinuma, H. ZnO-CoO solid solution thin films. J. Appl. Phys. 2001, 90, 4246-4250.
[46]
Kumar, R.; Khare, N. Temperature dependence of conduction mechanism of ZnO and Co-doped ZnO thin films. Thin Solid Films, 2008, 516, 1302-1307.
[47]
Roy, T. K.; Sanyal, D.; Bhowmick, D.; Chakrabarti, A. Temperature dependent resistivity study on zinc oxide and the role of defects. Mater. Sci. Semicond. Process. 2013, 16, 332-336.
[48]
Yan, L.; Ong, C. K.; Rao, X. S. Magnetic order in Co-doped and (Mn, Co) codoped ZnO thin films by pulsed laser deposition. J. Appl. Phys. 2004, 96, 508-511.
[49]
Birajdar, S. D.; Khirade, P. P.; Saraf, T. S.; Alange, R. C.; Jadhav, K. M. Sol-gel auto combustion synthesis, electrical and dielectric properties of Zn1-xCoxO (0.0 ≤ x ≤ 0.36) semiconductor nanoparticles. J. Alloys Compd. 2017, 691, 355-363.
[50]
Kulandaisamy, A. J.; Karthek, C.; Shankar, P.; Mani, G. K.; Rayappan, J. B. B. Tuning selectivity through cobalt doping in spray pyrolysis deposited ZnO thin films. Ceram. Int. 2016, 42, 1408-1415.
[51]
Liang, W. J.; Yuhas, B. D.; Yang, P. D. Magnetotransport in Co-doped ZnO nanowires. Nano Lett. 2009, 9, 892-896.
[52]
Whitaker, K. M.; Raskin, M.; Kiliani, G.; Beha, K.; Ochsenbein, S. T.; Janssen, N.; Fonin, M.; Rüdiger, U.; Leitenstorfer, A.; Gamelin, D. R. et al. Spin-on spintronics: Ultrafast electron spin dynamics in ZnO and Zn1-xCoxO Sol-Gel films. Nano Lett. 2011, 11, 3355-3360.
[53]
Woo, H. S.; Kwak, C. H.; Chung, J. H.; Lee, J. H. Co-doped branched ZnO nanowires for ultraselective and sensitive detection of xylene. ACS Appl. Mater. Interfaces 2014, 6, 22553-22560.
[54]
De Carvalho, H. B.; de Godoy, M. P. F.; Paes, R. W. D.; Mir, M.; de Zevallos, A. O.; Iikawa, F.; Brasil, M. J. S. P.; Chitta, V. A.; Ferraz, W. B.; Boselli, M. A. et al. Absence of ferromagnetic order in high quality bulk Co-doped ZnO samples. J. Appl. Phys. 2010, 108, 033914.
[55]
Fitzgerald, C. B.; Venkatesan, M.; Lunney, J. G.; Dorneles, L. S.; Coey, J. M. D. Cobalt-doped ZnO-a room temperature dilute magnetic semiconductor. Appl. Surf. Sci. 2005, 247, 493-496.
[56]
Zhu, Z. L.; Zhao, D. B.; Chueh, C. C.; Shi, X. L.; Li, Z. A.; Jen, A. K. Y. Highly efficient and stable perovskite solar cells enabled by all-crosslinked charge-transporting layers. Joule 2018, 2, 168-183.
[57]
Tai, Q. D.; You, P.; Sang, H. Q.; Liu, Z. K.; Hu, C. L.; Chan, H. L. W.; Yan, F. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Commun. 2016, 7, 11105.
[58]
Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.
[59]
Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727-3732.
[60]
Mao, A.; Han, G. Y.; Park, J. H. Synthesis and photoelectrochemical cell properties of vertically grown α-Fe2O3 nanorod arrays on a goldnanorod substrate. J. Mater. Chem. 2010, 20, 2247-2250.
[61]
Kim, H. S.; Lee, J. W.; Yantara, N.; Boix, P. P.; Kulkarni, S. A.; Mhaisalkar, S.; Grätzel, M.; Park, N. G. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 2013, 13, 2412-2417.
[62]
Bi, D. Q.; Moon, S. J.; Häggman, L.; Boschloo, G.; Yang, L.; Johansson, E. M. J.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv. 2013, 3, 18762c18766.
[63]
Wang, K. C.; Jeng, J. Y.; Shen, P. S.; Chang, Y. C.; Diau, E. W. G.; Tsai, C. H.; Chao, T. Y.; Hsu, H. C.; Lin, P. Y.; Chen, P. et al. p-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep. 2015, 4, 4756.
[64]
Christians, J. A.; Fung, R. C. M.; Kamat, P. V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 2014, 136, 758-764.
[65]
Jia, X. Y.; Zhao, J. W.; Qin, L. R.; Yang, C. F. Electrodeposition of PtNi nanosheets on flexible PET/ITO substrate and their electrocatalytic properties for methanol oxidation. J. Nano Res. 2015, 33, 150-157.
[66]
Sima, M.; Vasile, E.; Sima, M. ZnO films and nanorod/shell arrays electrodeposited on PET-ITO electrodes. Mater. Res. Bull. 2013, 48, 1581-1586.
[67]
Cesar, I.; Sivula, K.; Kay, A.; Zboril, R.; Grätzel, M. Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 2009, 113, 772-782.
[68]
Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464-466.
[69]
Zhang, Y. Y.; Ram, M. K.; Stefanakos, E. K.; Goswami, D. Y. Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. 2012, 2012, 20.
[70]
Amin, G.; Asif, M. H.; Zainelabdin, A.; Zaman, S.; Nur, O.; Willander, M. Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J. Nanomater. 2011, 2011, 5.
[71]
Ling, Y. C.; Wang, G. M.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 2011, 11, 2119-2125.
[72]
Belkhedkar, M. R.; Ubale, A. U. Preparation and characterization of nanocrystalline α-Fe2O3 thin films grown by successive ionic layer adsorption and reaction method. Int. J. Mater. Chem. 2014, 4, 109-116.
[73]
Shinde, S. S.; Bansode, R. A.; Bhosale, C. H.; Rajpure, K. Y. Physical properties of hematite α-Fe2O3 thin films: Application to photoelectrochemical solar cells. J. Semicond. 2011, 32, 013001.
[74]
Souza, F. L.; Lopes, K. P.; Nascente, P. A. P.; Leite, E. R. Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting. Solar Energy Mater. Solar Cells 2009, 93, 362-368.
[75]
Baig, F.; Khattak, Y. H.; Ullah, S.; Soucase, B. M.; Beg, S.; Ullah, H. Numerical analysis a guide to improve the efficiency of experismentally designed solar cell. Appl. Phys. A 2018, 124, 471.
[76]
Baig, F.; Khattak, Y. H.; Ullah, S.; Marí, B.; Beg, S.; Ullah, H. Numerical analysis of a novel FTO/n-MAPbI3/p-MAPbI3/p-MAPbBr3 organic-inorganic lead halide perovskite solar cell. J. Nanoelectron. Optoe. 2018, 13, 1320-1327.
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 March 2020
Revised: 19 May 2020
Accepted: 21 May 2020
Published: 26 June 2020
Issue date: September 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the Ministry of High Education and Scientific Research in Tunisia, the Spanish Ministry of Economy and Competitiveness.

Return