Journal Home > Volume 13 , Issue 7

Mixed dimensional van der Waals (vdW) heterostructures constructed by one-dimensional (1D) and two-dimensional (2D) materials exhibit extra degree of freedom to modulate the electronic and optical properties due to the combination of different dimensionalities. The charge transfer at the interface between 1D and 2D materials plays a crucial role in the optoelectronic properties and performance of the heterostructure-based devices. Here, we stacked single-walled carbon nanotubes (SWNTs) on monolayer WS2 for a mixed dimensional vdW heterostructure, and investigated the local modulation of excitions and trions in WS2 by SWNTs. Different directions of charge transfer between SWNTs and WS2 are evidenced by the photoluminescence (PL) spectra of WS2. The PL intensity can be either enhanced or weakened by individual SWNTs. In our work, the PL intensity of WS2 is enhanced and the exciton peak position heterostructure is red-shifted about 3 meV due to the charge transfer from WS2 to an individual SWNT (SWNT#1). The change of PL by another SWNT (SWNT#2) can not be well-resolved in far-field, but scanning near-field optical microscope (SNOM) measurements show that the PL intensity of WS2 is weakened by the SWNT. The peak position of exciton is blue-shifted by ~ 1 meV while that of trion is redshifted by ~ 1 meV due to the charge transfer from the SWNT to WS2. These results give insight into the charge transfer at the interface of SWNT/WS2 heterostructure, and can be useful for design of optoelectronic devices based on mixed dimensional vdW heterostructures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Local modulation of excitons and trions in monolayer WS2 by carbon nanotubes

Show Author's information Rui Feng1,2Shicheng Xu1Weiming Liu1Peng Gao3Jin Zhang1( )Lianming Tong1( )
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
School of Physics, Peking University, Beijing 100871, China

Abstract

Mixed dimensional van der Waals (vdW) heterostructures constructed by one-dimensional (1D) and two-dimensional (2D) materials exhibit extra degree of freedom to modulate the electronic and optical properties due to the combination of different dimensionalities. The charge transfer at the interface between 1D and 2D materials plays a crucial role in the optoelectronic properties and performance of the heterostructure-based devices. Here, we stacked single-walled carbon nanotubes (SWNTs) on monolayer WS2 for a mixed dimensional vdW heterostructure, and investigated the local modulation of excitions and trions in WS2 by SWNTs. Different directions of charge transfer between SWNTs and WS2 are evidenced by the photoluminescence (PL) spectra of WS2. The PL intensity can be either enhanced or weakened by individual SWNTs. In our work, the PL intensity of WS2 is enhanced and the exciton peak position heterostructure is red-shifted about 3 meV due to the charge transfer from WS2 to an individual SWNT (SWNT#1). The change of PL by another SWNT (SWNT#2) can not be well-resolved in far-field, but scanning near-field optical microscope (SNOM) measurements show that the PL intensity of WS2 is weakened by the SWNT. The peak position of exciton is blue-shifted by ~ 1 meV while that of trion is redshifted by ~ 1 meV due to the charge transfer from the SWNT to WS2. These results give insight into the charge transfer at the interface of SWNT/WS2 heterostructure, and can be useful for design of optoelectronic devices based on mixed dimensional vdW heterostructures.

Keywords: WS2, trion, single-walled carbon nanotube (SWNT), mixed dimensional heterostructure, excitons

References(38)

[1]
Sun, Y.; Zhong, W.; Wang, Y. Q.; Xu, X. B.; Wang, T. T.; Wu, L. Q.; Du, Y. W. MoS2-based mixed-dimensional van der Waals heterostructures: A new platform for excellent and controllable microwave-absorption performance. ACS Appl. Mater. Interfaces 2017, 9, 34243-34255.
[2]
Jariwala, D.; Sangwan, V. K.; Wu, C. C.; Prabhumirashi, P. L.; Geier, M. L.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. Proc. Natl. Acad. Sci. USA 2013, 110, 18076-18080.
[3]
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
[4]
Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543-1560.
[5]
Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170-181.
[6]
Wu, H. L.; Si, H. N.; Zhang, Z. H.; Kang, Z.; Wu, P. W.; Zhou, L. X.; Zhang, S. C.; Zhang, Z.; Liao, Q. L.; Zhang, Y. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv. Sci. 2018, 5, 1801219.
[7]
Sun, Y.; Xu, J. L.; Qiao, W.; Xu, X. B.; Zhang, W. L.; Zhang, K. Y.; Zhang, X.; Chen, X.; Zhong, W.; Du, Y. W. Constructing two-, zero-, and one-dimensional integrated nanostructures: An effective strategy for high microwave absorption performance. ACS Appl. Mater. Interfaces 2016, 8, 31878-31886.
[8]
Shang, H. M.; Chen, H. Y.; Dai, M. L.; Hu, Y. X.; Gao, F.; Yang, H. H.; Xu, B.; Zhang, S. C.; Tan, B. Y.; Zhang, X. et al. A mixed-dimensional 1D Se-2D InSe van der Waals heterojunction for high responsivity self-powered photodetectors. Nanoscale Horiz. 2020, 5, 564-572.
[9]
Qin, J. K.; Yan, H.; Qiu, G.; Si, M. W.; Miao, P.; Duan, Y. Q.; Shao, W. Z.; Zhen, L.; Xu, C. Y.; Ye, P. D. Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures. Nano Res. 2019, 12, 669-674.
[10]
Henning, A.; Sangwan, V. K.; Bergeron, H.; Balla, I.; Sun, Z. Y.; Hersam, M. C.; Lauhon, L. J. Charge separation at mixed-dimensional single and multilayer MoS2/silicon nanowire heterojunctions. ACS Appl. Mater. Interfaces 2018, 10, 16760-16767.
[11]
Park, S.; Vosguerichian, M.; Bao, Z. A. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5, 1727-1752.
[12]
Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 2003, 3, 1235-1238.
[13]
Liu, Y. D.; Wang, F. Q.; Wang, X. M.; Wang, X. Z.; Flahaut, E.; Liu, X. L.; Li, Y.; Wang, X. R.; Xu, Y. B.; Shi, Y. et al. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nat. Commun. 2015, 6, 8589.
[14]
Zhang, K.; Wei, Y.; Zhang, J.; Ma, H.; Yang, X. H.; Lu, G. T.; Zhang, K. N.; Li, Q. Q.; Jiang, K. L.; Fan, S. S. Electrical control of spatial resolution in mixed-dimensional heterostructured photodetectors. Proc. Natl. Acad. Sci. USA 2019, 116, 6586-6593.
[15]
Liu, C.; Hong, H.; Wang, Q. H.; Liu, P.; Zuo, Y. G.; Liang, J.; Cheng, Y.; Zhou, X.; Wang, J. H.; Zhao, Y. et al. Strong-coupled hybrid structure of carbon nanotube and MoS2 monolayer with ultrafast interfacial charge transfer. Nanoscale 2019, 11, 17195-17200.
[16]
Plechinger, G.; Nagler, P.; Kraus, J.; Paradiso, N.; Strunk, C.; Schüller, C.; Korn, T. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi-Rapid Res. Lett. 2015, 9, 457-461.
[17]
Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C. I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J. C. et al. Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 2013, 3, 1755.
[18]
Hill, H. M.; Rigosi, A. F.; Roquelet, C.; Chernikov, A.; Berkelbach, T. C.; Reichman, D. R.; Hybertsen, M. S.; Brus, L. E.; Heinz, T. F. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 2015, 15, 2992-2997.
[19]
Shi, H. L.; Pan, H.; Zhang, Y. W.; Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 2013, 87, 155304.
[20]
Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep. 2015, 5, 9218.
[21]
Shang, J. Z.; Shen, X. N.; Cong, C. X.; Peimyoo, N.; Cao, B. C.; Eginligil, M.; Yu, T. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015, 9, 647-655.
[22]
Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.
[23]
Mitioglu, A. A.; Plochocka, P.; Jadczak, J. N.; Escoffier, W.; Rikken, G. L. J. A.; Kulyuk, L.; Maude, D. K. Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B 2013, 88, 245403.
[24]
Peimyoo, N.; Yang, W. H.; Shang, J. Z.; Shen, X. N.; Wang, Y. L.; Yu, T. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano 2014, 8, 11320-11329.
[25]
Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207-211.
[26]
Ko, P. J.; Abderrahmane, A.; Thu, T. V.; Ortega, D.; Takamura, T.; Sandhu, A. Laser power dependent optical properties of mono- and few-layer MoS2. J. Nanosci. Nanotechnol. 2015, 15, 6843-6846.
[27]
McCreary, K. M.; Hanbicki, A. T.; Singh, S.; Kawakami, R. K.; Jernigan, G. G.; Ishigami, M.; Ng, A.; Brintlinger, T. H.; Stroud, R. M.; Jonker, B. T. The effect of preparation conditions on Raman and photoluminescence of monolayer WS2. Sci. Rep. 2016, 6, 35154.
[28]
Wang, X. H.; Ning, J. Q.; Su, Z. C.; Zheng, C. C.; Zhu, B. R.; Xie, L.; Wu, H. S.; Xu, S. J. Photoinduced doping and photoluminescence signature in an exfoliated WS2 monolayer semiconductor. RSC Adv. 2016, 6, 27677-27681.
[29]
Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.
[30]
Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.
[31]
Schmidt, T.; Lischka, K.; Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 1992, 45, 8989-8994.
[32]
Huard, V.; Cox, R. T.; Saminadayar, K.; Arnoult, A.; Tatarenko, S. Bound states in optical absorption of semiconductor quantum wells containing a two-dimensional electron gas. Phys. Rev. Lett. 2000, 84, 187-190.
[33]
Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47-99.
[34]
Dolui, K.; Rungger, I.; Sanvito, S. Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys. Rev. B 2013, 87, 165402.
[35]
Cabria, I.; Mintmire, J. W.; White, C. T. Metallic and semiconducting narrow carbon nanotubes. Phys. Rev. B 2003, 67, 121406(R).
[36]
Itkis, M. E.; Niyogi, S.; Meng, M. E.; Hamon, M. A.; Hu, H.; Haddon, R. C. Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes. Nano Lett. 2002, 2, 155-159.
[37]
Finkelstein, G.; Shtrikman, H.; Bar-Joseph, I. I. Optical spectroscopy of a two-dimensional electron gas near the metal-insulator transition. Phys. Rev. Lett. 1995, 74, 976-979.
[38]
Currie, M.; Hanbicki, A. T.; Kioseoglou, G.; Jonker, B. T. Optical control of charged exciton states in tungsten disulfide. Appl. Phys. Lett. 2015, 106, 201907.
File
12274_2020_2895_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 February 2020
Revised: 19 May 2020
Accepted: 21 May 2020
Published: 09 June 2020
Issue date: July 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the National Basic Research Program of China (Nos. 2018YFA0703502 and 2016YFA0200104) and the National Natural Science Foundation of China (Nos. 51720105003, 21790052, 21573004 and 21974004).

Return