Journal Home > Volume 13 , Issue 7

Mixed dimensional van der Waals (vdW) heterostructures constructed by one-dimensional (1D) and two-dimensional (2D) materials exhibit extra degree of freedom to modulate the electronic and optical properties due to the combination of different dimensionalities. The charge transfer at the interface between 1D and 2D materials plays a crucial role in the optoelectronic properties and performance of the heterostructure-based devices. Here, we stacked single-walled carbon nanotubes (SWNTs) on monolayer WS2 for a mixed dimensional vdW heterostructure, and investigated the local modulation of excitions and trions in WS2 by SWNTs. Different directions of charge transfer between SWNTs and WS2 are evidenced by the photoluminescence (PL) spectra of WS2. The PL intensity can be either enhanced or weakened by individual SWNTs. In our work, the PL intensity of WS2 is enhanced and the exciton peak position heterostructure is red-shifted about 3 meV due to the charge transfer from WS2 to an individual SWNT (SWNT#1). The change of PL by another SWNT (SWNT#2) can not be well-resolved in far-field, but scanning near-field optical microscope (SNOM) measurements show that the PL intensity of WS2 is weakened by the SWNT. The peak position of exciton is blue-shifted by ~ 1 meV while that of trion is redshifted by ~ 1 meV due to the charge transfer from the SWNT to WS2. These results give insight into the charge transfer at the interface of SWNT/WS2 heterostructure, and can be useful for design of optoelectronic devices based on mixed dimensional vdW heterostructures.

File
12274_2020_2895_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 February 2020
Revised: 19 May 2020
Accepted: 21 May 2020
Published: 09 June 2020
Issue date: July 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the National Basic Research Program of China (Nos. 2018YFA0703502 and 2016YFA0200104) and the National Natural Science Foundation of China (Nos. 51720105003, 21790052, 21573004 and 21974004).

Return