Journal Home > Volume 13 , Issue 10

Orientation-controlled growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs) may enable many new electronic and optical applications. However, previous studies reporting aligned growth of WSe2 usually yielded very small domain sizes. Herein, we introduced gold vapor into the chemical vapor deposition (CVD) process as a catalyst to assist the growth of WSe2 and successfully achieved highly aligned monolayer WSe2 triangular flakes grown on c-plane sapphire with large domain sizes (130 μm) and fast growth rate (4.3 μm·s-1). When the aligned WSe2 domains merged together, a continuous monolayer WSe2 was formed with good uniformity. After transferring to Si/SiO2 substrates, field effect transistors were fabricated on the continuous monolayer WSe2, and an average mobility of 12 cm2·V-1·s-1 was achieved, demonstrating the good quality of the material. This report paves the way to study the effect of catalytic metal vapor in the CVD process of TMDCs and contributes a novel approach to realize the growth of aligned TMDC flakes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Gold-vapor-assisted chemical vapor deposition of aligned monolayer WSe2 with large domain size and fast growth rate

Show Author's information Mingrui Chen§Anyi Zhang§Yihang LiuDingzhou CuiZhen LiYu-Han ChungSai Praneetha MutyalaMatthew MecklenburgXiao NieChi XuFanqi WuQingzhou LiuChongwu Zhou( )
Mork Family Department of Chemical Engineering and Materials Science, Ming Hsieh Department of Electrical Engineering, Core Center of Excellence in Nano Imaging and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA

§Mingrui Chen and Anyi Zhang contributed equally to this work.

Abstract

Orientation-controlled growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs) may enable many new electronic and optical applications. However, previous studies reporting aligned growth of WSe2 usually yielded very small domain sizes. Herein, we introduced gold vapor into the chemical vapor deposition (CVD) process as a catalyst to assist the growth of WSe2 and successfully achieved highly aligned monolayer WSe2 triangular flakes grown on c-plane sapphire with large domain sizes (130 μm) and fast growth rate (4.3 μm·s-1). When the aligned WSe2 domains merged together, a continuous monolayer WSe2 was formed with good uniformity. After transferring to Si/SiO2 substrates, field effect transistors were fabricated on the continuous monolayer WSe2, and an average mobility of 12 cm2·V-1·s-1 was achieved, demonstrating the good quality of the material. This report paves the way to study the effect of catalytic metal vapor in the CVD process of TMDCs and contributes a novel approach to realize the growth of aligned TMDC flakes.

Keywords: two-dimensional materials, chemical vapor deposition, transition metal dichalcogenides, aligned growth, tungsten diselenide (WSe2)

References(45)

[1]
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
[2]
Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 2014, 8, 899-907.
[3]
Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788-3792.
[4]
Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983-1990.
[5]
Ma, Y. Q.; Liu, B. L.; Zhang, A. Y.; Chen, L.; Fathi, M.; Shen, C. F.; Abbas, A. N.; Ge, M. Y.; Mecklenburg, M.; Zhou, C. W. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 2015, 9, 7383-7391.
[6]
Liu, B. L.; Ma, Y. Q.; Zhang, A. Y.; Chen, L.; Abbas, A. N.; Liu, Y. H.; Shen, C. F.; Wan, H. C.; Zhou, C. W. High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions. ACS Nano 2016, 10, 5153-5160.
[7]
Sarkar, D.; Xie, X. J.; Kang, J. H.; Zhang, H. J.; Liu, W.; Navarrete, J.; Moskovits, M.; Banerjee, K. Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing. Nano Lett. 2015, 15, 2852-2862.
[8]
Nam, H.; Oh, B. R.; Chen, M. K.; Wi, S. J.; Li, D.; Kurabayashi, K.; Liang, X. G. Fabrication and comparison of MoS2 and WSe2 field- effect transistor biosensors. J. Vac. Sci. Technol. B 2015, 33, 06FG01.
[9]
Wu, F. Q.; Chen, L.; Zhang, A. Y.; Hong, Y. L.; Shih, N. Y.; Cho, S. Y.; Drake, G. A.; Fleetham, T.; Cong, S.; Cao, X. et al. High-performance sub-micrometer channel WSe2 field-effect transistors prepared using a flood-dike printing method. ACS Nano 2017, 11, 12536-12546.
[10]
Kelly, A. G.; Hallam, T.; Backes, C.; Harvey, A.; Esmaeily, A. S.; Godwin, I.; Coelho, J.; Nicolosi, V.; Lauth, J.; Kulkarni, A. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 2017, 356, 69-73.
[11]
Das, S.; Gulotty, R.; Sumant, A. V.; Roelofs, A. All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 2014, 14, 2861-2866.
[12]
Zheng, Z. Q.; Zhang, T. M.; Yao, J. D.; Zhang, Y.; Xu, J. R.; Yang, G. W. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 2016, 27, 225501.
[13]
Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2014, 8, 923-930.
[14]
Chen, J. Y.; Liu, B.; Liu, Y. P.; Tang, W.; Nai, C. T.; Li, L. J.; Zheng, J.; Gao, L. B.; Zheng, Y.; Shin, H. S. et al. Chemical vapor deposition of large-sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater. 2015, 27, 6722-6727.
[15]
Li, S. S.; Wang, S. F.; Tang, D. M.; Zhao, W. J.; Xu, H. L.; Chu, L. Q.; Bando, Y.; Golberg, D.; Eda, G. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 2015, 1, 60-66.
[16]
Huang, J.; Yang, L.; Liu, D.; Chen, J.; Fu, Q.; Xiong, Y.; Lin, F.; Xiang, B. Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications. Nanoscale 2015, 7, 4193-4198.
[17]
Zhang, X. T.; Choudhury, T. H.; Chubarov, M.; Xiang, Y.; Jariwala, B.; Zhang, F.; Alem, N.; Wang, G. C.; Robinson, J. A.; Redwing, J. M. Diffusion-controlled epitaxy of large area coalesced WSe2 monolayers on sapphire. Nano Lett. 2018, 18, 1049-1056.
[18]
Yu, H.; Yang, Z. Z.; Du, L. J.; Zhang, J.; Shi, J.; Chen, W.; Chen, P.; Liao, M. Z.; Zhao, J.; Meng, J. L. et al. Precisely aligned monolayer MoS2 epitaxially grown on h-BN basal plane. Small 2017, 13, 1603005.
[19]
Chen, Z. X.; Liu, H. Q.; Chen, X. C.; Chu, G.; Chu, S.; Zhang, H. Wafer-size and single-crystal MoSe2 atomically thin films grown on GaN substrate for light emission and harvesting. ACS Appl. Mater. Interfaces 2016, 8, 20267-20273.
[20]
Ruzmetov, D.; Zhang, K. H.; Stan, G.; Kalanyan, B.; Bhimanapati, G. R.; Eichfeld, S. M.; Burke, R. A.; Shah, P. B.; O'Regan, T. P.; Crowne, F. J. et al. Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride. ACS Nano 2016, 10, 3580-3588.
[21]
Ji, Q. Q.; Zhang, Y. F.; Gao, T.; Zhang, Y.; Ma, D. L.; Liu, M. X.; Chen, Y. B.; Qiao, X. F.; Tan, P. H.; Kan, M. et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 2013, 13, 3870-3877.
[22]
Ago, H.; Fukamachi, S.; Endo, H.; Solis-Fernandez, P.; Yunus, R. M.; Uchida, Y.; Panchal, V.; Kazakova, O.; Tsuji, M. Visualization of grain structure and boundaries of polycrystalline graphene and two-dimensional materials by epitaxial growth of transition metal dichalcogenides. ACS Nano 2016, 10, 3233-3240.
[23]
Eichfeld, S. M.; Hossain, L.; Lin, Y. C.; Piasecki, A. F.; Kupp, B.; Birdwell, A. G.; Burke, R. A.; Lu, N.; Peng, X.; Li, J. et al. Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano 2015, 9, 2080-2087.
[24]
Ago, H.; Endo, H.; Solís-Fernández, P.; Takizawa, R.; Ohta, Y.; Fujita, Y.; Yamamoto, K.; Tsuji, M. Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. ACS Appl. Mater. Interfaces 2015, 7, 5265-5273.
[25]
Lu, C. I.; Butler, C. J.; Huang, J. K.; Hsing, C. R.; Yang, H. H.; Chu, Y. H.; Luo, C. H.; Sun, Y. C.; Hsu, S. H.; Yang, K. H. O. et al. Graphite edge controlled registration of monolayer MoS2 crystal orientation. Appl. Phys. Lett. 2015, 106, 181904.
[26]
Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazić, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y. C.; Krasnozhon, D.; Chen, M. W. Large-area epitaxial monolayer MoS2. ACS Nano 2015, 9, 4611-4620.
[27]
Chen, L.; Liu, B. L.; Ge, M. Y.; Ma, Y. Q.; Abbas, A. N.; Zhou, C. W. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano 2015, 9, 8368-8375.
[28]
Aljarb, A.; Cao, Z.; Tang, H. L.; Huang, J. K.; Li, M. L.; Hu, W. J.; Cavallo, L.; Li, L. J. Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS Nano 2017, 11, 9215-9222.
[29]
Ly, T. H.; Chiu, M. H.; Li, M. Y.; Zhao, J.; Perello, D. J.; Cichocka, M. O.; Oh, H. M.; Chae, S. H.; Jeong, H. Y.; Yao, F. et al. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides. ACS Nano 2014, 8, 11401-11408.
[30]
Tsivion, D.; Schvartzman, M.; Popovitz-Biro, R.; von Huth, P.; Joselevich, E. Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 2011, 333, 1003-1007.
[31]
Kurnosikov, O.; Pham Van, L.; Cousty, J. About anisotropy of atomic-scale height step on (0001) sapphire surface. Surf. Sci. 2000, 459, 256-264.
[32]
Heffelfinger, J. R.; Bench, M. W.; Carter, C. B. Steps and the structure of the (0001) α-alumina surface. Surf. Sci. 1997, 370, L168-L172.
[33]
Del Corro, E.; Terrones, H.; Elias, A.; Fantini, C.; Feng, S. M.; Nguyen, M. A.; Mallouk, T. E.; Terrones, M.; Pimenta, M. A. Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy. ACS Nano 2014, 8, 9629-9635.
[34]
Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908-4916.
[35]
Xu, K.; Wang, Z. X.; Du, X. L.; Safdar, M.; Jiang, C.; He, J. Atomic-layer triangular WSe2 sheets: Synthesis and layer-dependent photoluminescence property. Nanotechnology 2013, 24, 465705.
[36]
Li, Y.; Hao, S. Q.; DiStefano, J. G.; Murthy, A. A.; Hanson, E. D.; Xu, Y. B.; Wolverton, C.; Chen, X. Q.; Dravid, V. P. Site-specific positioning and patterning of MoS2 monolayers: The role of Au seeding. ACS Nano 2018, 12, 8970-8976.
[37]
Song, I.; Park, C.; Hong, M. S.; Baik, J.; Shin, H. J.; Choi, H. C. Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition. Angew. Chem., Int. Ed. 2014, 53, 1266-1269.
[38]
Yun, S. J.; Chae, S. H.; Kim, H.; Park, J. C.; Park, J. H.; Han, G. H.; Lee, J. S.; Kim, S. M.; Oh, H. M.; Seok, J. et al. Synthesis of centimeter- scale monolayer tungsten disulfide film on gold foils. ACS Nano 2015, 9, 5510-5519.
[39]
Kim, H.; Song, I.; Park, C.; Son, M.; Hong, M.; Kim, Y.; Kim, J. S.; Shin, H. J.; Baik, J.; Choi, H. C. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 2013, 7, 6575-6582.
[40]
Yang, C.; Wu, T. R.; Wang, H. M.; Zhang, X. F.; Shi, Z. Y.; Xie, X. M. Copper-vapor-catalyzed chemical vapor deposition of graphene on dielectric substrates. Appl. Phys. Lett. 2017, 111, 043107.
[41]
Teng, P. Y.; Lu, C. C.; Akiyama-Hasegawa, K.; Lin, Y. C.; Yeh, C. H.; Suenaga, K.; Chiu, P. W. Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett. 2012, 12, 1379-1384.
[42]
Gao, Y.; Liu, Z. B.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z. Y.; Ma, X. L.; Peng, L. M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.
[43]
Gao, Y.; Hong, Y. L.; Yin, L. C.; Wu, Z. T.; Yang, Z. Q.; Chen, M. L.; Liu, Z. B.; Ma, T.; Sun, D. M.; Ni, Z. H. et al. Ultrafast growth of high-quality monolayer WSe2 on Au. Adv. Mater. 2017, 29, 1700990.
[44]
Liu, J. X.; Zeng, M. Q.; Wang, L. X.; Chen, Y. T.; Xing, Z.; Zhang, T.; Liu, Z.; Zuo, J. L.; Nan, F.; Mendes, R. G. et al. Ultrafast self-limited growth of strictly monolayer WSe2 crystals. Small 2016, 12, 5741-5749.
[45]
Gurarslan, A.; Yu, Y. F.; Su, L. Q.; Yu, Y. L.; Suarez, F.; Yao, S. S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Y. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 2014, 8, 11522-11528.
File
12274_2020_2893_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 November 2019
Revised: 17 May 2020
Accepted: 21 May 2020
Published: 15 July 2020
Issue date: October 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We would like to acknowledge the collaboration of this research with King Abdul-Aziz City for Science and Technology (KACST) via The Center of Excellence for Nanotechnologies (CEGN). A portion of the images and data used in this article were generated at the Core Center of Excellence in Nano Imaging (CNI), University of Southern California.

Return