Journal Home > Volume 13 , Issue 9

Using scanning tunneling microscopy/spectroscopy (STM/STS), we examine quasiparticle scattering and interference properties at the surface of WTe2. WTe2, layered transition metal dichalcogenide, is predicted to be a type-II Weyl semimetal. The Weyl fermion states in WTe2 emerge as topologically protected touching points of electron and hole pockets, and Fermi arcs connecting them can be visible in the spectral function on the surface. To probe the properties of surface states, we have conducted low-temperature STM/STS (at 2.7 K) on the surfaces of WTe2 single crystals. We visualize the surface states of WTe2 with atomic scale resolution. Clear surface states emerging from the bulk electron pocket have been identified and their connection with the bulk electronic states shows good agreement with calculations. We show the interesting double resonance peaks in the local density of states appearing at localized impurities. The low-energy resonant peak occurs near the Weyl point above the Fermi energy and it may be mixed with the surface state of Weyl points, which makes it difficult to observe the topological nature of the Weyl semimetal WTe2.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Quasiparticle interference and impurity resonances on WTe2

Show Author's information Hyeokshin Kwon1,§Taehwan Jeong2,§Samudrala Appalakondaiah2,3,§Youngtek Oh1Insu Jeon1Hongki Min4Seongjun Park1( )Young Jae Song2,3,5,6( )Euyheon Hwang2,3( )Sungwoo Hwang1
Samsung Advanced Institute of Technology, Samsung Electronics Co., Suwon 16678, Republic of Korea
SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea

§ Hyeokshin Kwon, Taehwan Jeong, and Samudrala Appalakondaiah contributed equally to this work.

Abstract

Using scanning tunneling microscopy/spectroscopy (STM/STS), we examine quasiparticle scattering and interference properties at the surface of WTe2. WTe2, layered transition metal dichalcogenide, is predicted to be a type-II Weyl semimetal. The Weyl fermion states in WTe2 emerge as topologically protected touching points of electron and hole pockets, and Fermi arcs connecting them can be visible in the spectral function on the surface. To probe the properties of surface states, we have conducted low-temperature STM/STS (at 2.7 K) on the surfaces of WTe2 single crystals. We visualize the surface states of WTe2 with atomic scale resolution. Clear surface states emerging from the bulk electron pocket have been identified and their connection with the bulk electronic states shows good agreement with calculations. We show the interesting double resonance peaks in the local density of states appearing at localized impurities. The low-energy resonant peak occurs near the Weyl point above the Fermi energy and it may be mixed with the surface state of Weyl points, which makes it difficult to observe the topological nature of the Weyl semimetal WTe2.

Keywords: scanning tunneling microscopy/spectroscopy, WTe2, Weyl semimetal, quasi-particle interference

References(46)

[1]
Young, S. M.; Zaheer, S.; Teo, J. C. Y.; Kane, C. L.; Mele, E. J.; Rappe, A. M. Dirac semimetal in three dimensions. Phys. Rev. Lett. 2012, 108, 140405.
[2]
Tarruell, L.; Greif, D.; Uehlinger, T.; Jotzu, G.; Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 2012, 483, 302-305.
[3]
Wang, Z. J.; Sun, Y.; Chen, X. Q.; Franchini, C.; Xu, G.; Weng, H. M.; Dai, X.; Fang, Z. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 2012, 85, 195320.
[4]
Singh, B.; Sharma, A.; Lin, H.; Hasan, M. Z.; Prasad, R.; Bansil, A. Topological electronic structure and Weyl semimetal in the TlBiSe2 class of semiconductors. Phys. Rev. B 2012, 86, 115208.
[5]
Smith, J. C.; Banerjee, S.; Pardo, V.; Pickett, W. E. Dirac point degenerate with massive bands at a topological quantum critical point. Phys. Rev. Lett. 2011, 106, 056401.
[6]
Liu, C. X.; Ye, P.; Qi, X. L. Chiral gauge field and axial anomaly in a Weyl semimetal. Phys. Rev. B 2013, 87, 235306.
[7]
Witczak-Krempa, W.; Kim, Y. B. Topological and magnetic phases of interacting electrons in the pyrochlore iridates. Phys. Rev. B 2012, 85, 045124.
[8]
Xu, G.; Weng, H. M.; Wang, Z. J.; Dai, X.; Fang, Z. Chern semimetal and the quantized anomalous hall effect in HgCr2Se4. Phys. Rev. Lett. 2011, 107, 186806.
[9]
Kobayashi, K.; Ohtsuki, T.; Imura, K. I.; Herbut, I. F. Density of states scaling at the semimetal to metal transition in three dimensional topological insulators. Phys. Rev. Lett. 2014, 112, 016402.
[10]
Nandkishore, R.; Huse, D. A.; Sondhi, S. L. Rare region effects dominate weakly disordered three-dimensional dirac points. Phys. Rev. B 2014, 89, 245110.
[11]
Liu, Z. K.; Zhou, B.; Zhang, Y.; Wang, Z. J.; Weng, H. M.; Prabhakaran, D.; Mo, S. K.; Shen, Z. X.; Fang, Z.; Dai, X. et al. Discovery of a three-dimensional topological dirac semimetal, Na3Bi. Science 2014, 343, 864-867.
[12]
Borisenko, S.; Gibson, Q.; Evtushinsky, D.; Zabolotnyy, V.; Büchner, B.; Cava, R. J. Experimental realization of a three-dimensional dirac semimetal. Phys. Rev. Lett. 2014, 113, 027603.
[13]
Neupane, M.; Xu, S. Y.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, C.; Belopolski, I.; Chang, T. R.; Jeng, H. T.; Lin, H. et al. Observation of a three-dimensional topological dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 2014, 5, 3786.
[14]
Wan, X. G.; Turner, A. M.; Vishwanath, A.; Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 2011, 83, 205101.
[15]
Balents, L. Weyl electrons kiss. Physics 2011, 4, 36.
[16]
Burkov, A. A.; Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 2011, 107, 127205.
[17]
Weng, H. M.; Fang, C.; Fang, Z.; Bernevig, B. A.; Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 2015, 5, 011029.
[18]
Hosur, P.; Qi, X. L. Recent developments in transport phenomena in Weyl semimetals. CR Phys. 2013, 14, 857-870.
[19]
Lv, B. Q.; Weng, H. M.; Fu, B. B.; Wang, X. P.; Miao, H.; Ma, J.; Richard, P.; Huang, X. C.; Zhao, L. X.; Chen, G. F. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 2015, 5, 031013.
[20]
Xu, S. Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C. C. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 2015, 349, 613-617.
[21]
Yang, L. X.; Liu, Z. K.; Sun, Y.; Peng, H.; Yang, H. F.; Zhang, T.; Zhou, B.; Zhang, Y.; Guo, Y. F.; Rahn, M. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 2015, 11, 728-732.
[22]
Batabyal, R.; Morali, N.; Avraham, N.; Sun, Y.; Schmidt, M.; Felser, C.; Stern, A.; Yan, B. H.; Beidenkopf, H. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions. Sci. Adv. 2016, 2, e1600709.
[23]
Inoue, H.; Gyenis, A.; Wang, Z. J.; Li, J.; Oh, S. W.; Jiang, S.; Ni, N.; Bernevig, B. A.; Yazdani, A. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science 2016, 351, 1184-1187.
[24]
Soluyanov, A. A.; Gresch, D.; Wang, Z. J.; Wu, Q. S.; Troyer, M.; Dai, X.; Bernevig, B. A. Type-II Weyl semimetals. Nature, 2015, 527, 495-498.
[25]
Ali, M. N.; Xiong, J.; Flynn, S.; Tao, J.; Gibson, Q. D.; Schoop, L. M.; Liang, T.; Haldolaarachchige, N.; Hirschberger, M.; Ong, N. P. et al. Large, non-saturating magnetoresistance in WTe2. Nature 2014, 514, 205-208.
[26]
Kang, D. F.; Zhou, Y. Z.; Yi, W.; Yang, C. L.; Guo, J.; Shi, Y. G.; Zhang, S.; Wang, Z.; Zhang, C.; Jiang, S. et al. Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride. Nat. Commun. 2015, 6, 7804.
[27]
Pan, X. C.; Chen, X. L.; Liu, H. M.; Feng, Y. Q.; Wei, Z. X.; Zhou, Y. H.; Chi, Z. H.; Pi, L.; Yen, F.; Song, F. Q. et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride. Nat. Commun. 2015, 6, 7805.
[28]
Wu, Y.; Mou, D. X.; Jo, N. H.; Sun, K. W.; Huang, L. N.; Bud’ko, S. L.; Canfield, P. C.; Kaminski, A. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 2016, 94, 121113.
[29]
Bruno, F. Y.; Tamai, A.; Wu, Q. S.; Cucchi, I.; Barreteau, C.; de la Torre, A.; McKeown Walker, S.; Riccò, S.; Wang, Z.; Kim, T. K. et al. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 2016, 94, 121112.
[30]
Sánchez-Barriga, J.; Vergniory, M. G.; Evtushinsky, D.; Aguilera, I.; Varykhalov, A.; Blügel, S.; Rader, O. Surface Fermi arc connectivity in the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 2016, 94, 161401.
[31]
Feng, B. J.; Chan, Y. H.; Feng, Y.; Liu, R. Y.; Chou, M. Y.; Kuroda, K.; Yaji, K.; Harasawa, A.; Moras, P.; Barinov, A. et al. Spin texture in type-II Weyl semimetal WTe2. Phys. Rev. B 2016, 94, 195134.
[32]
Wang, C. L.; Zhang, Y.; Huang, J. W.; Nie, S. M.; Liu, G. D.; Liang, A. J.; Zhang, Y. X.; Shen, B.; Liu, J.; Hu, C. et al. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 2016, 94, 241119.
[33]
Sprunger, P. T.; Petersen, L.; Plummer, E. W.; Lægsgaard, E.; Besenbacher, F. Giant friedel oscillations on the beryllium(0001) surface. Science 1997, 275, 1764-1767.
[34]
Seo, J.; Roushan, P.; Beidenkopf, H.; Hor, Y. S.; Cava, R. J.; Yazdani, A. Transmission of topological surface states through surface barriers. Nature 2010, 466, 343-346.
[35]
Okada, Y.; Dhital, C.; Zhou, W. W.; Huemiller, E. D.; Lin, H.; Basak, S.; Bansil, A.; Huang, Y. B.; Ding, H.; Wang, Z. et al. Direct observation of broken time-reversal symmetry on the surface of a magnetically doped topological insulator. Phys. Rev. Lett. 2011, 106, 206805.
[36]
Simon, L.; Bena, C.; Vonau, F.; Cranney, M.; Aubel, D. Fourier-transform scanning tunnelling spectroscopy: The possibility to obtain constant-energy maps and band dispersion using a local measurement. J. Phys. D: Appl. Phys. 2011, 44, 464010.
[37]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[38]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[39]
Chen, L.; Cheng, P.; Wu, K. H. Quasiparticle interference in unconventional 2D systems. J. Phys.: Condens. Matter 2017, 29, 103001.
[40]
Wang, J.; Li, W.; Cheng, P.; Song, C. L.; Zhang, T.; Deng, P.; Chen, X.; Ma, X. C.; He, K.; Jia, J. F. et al. Power-Law decay of standing waves on the surface of topological insulators. Phys. Rev. B 2011, 84, 235447.
[41]
Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566-569.
[42]
Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048-5079.
[43]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[44]
Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115-13118.
[45]
Sancho, M. P. L.; Sancho, J. M. L.; Sancho, J. M. L.; Rubio, J. Highly convergent schemes for the calculation of bulk and surface green functions. J. Phys. F: Met. Phys. 1985, 15, 851-858.
[46]
Wu, Q. S.; Zhang, S. N.; Song, H. F.; Troyer, M.; Soluyanov, A. A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 2018, 224, 405-416.
File
12274_2020_2892_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 September 2019
Revised: 14 May 2020
Accepted: 21 May 2020
Published: 22 June 2020
Issue date: September 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We thank K. Lee and J. Heo for useful discussions and other colleagues at the Samsung Advanced Institute of Technology (SAIT). This work has been supported by the Global Research Laboratory Program (No. 2016K1A1A2912707), Quantum Computing Development Program (No. 2019M3E4A1080227), the Basic Science Research Program (No. 2015M3A7B4050455) and the SRC Center for Topological Matter (No. 2018R1A5A6075964) through the National Research Foundation (NRF) funded by the Ministry of Science and ICT (MSIT) in Korea. This work has been supported by Industrial Strategic Technology Development Program (No. 10085617) funded by the Ministry of Trade Industry & Energy (MOTIE) in Korea. This work has been supported by Institute for Basic Science (No. IBS-R011-D1). Supercomputing resources including technical service were supported by National Institute of Supercomputing and Network through Korea Institute of Science and Technology Information (No. KSC-2018-S1-0008).

Return