Journal Home > Volume 13 , Issue 9

GaSb-based nanowires in a gate-all-around geometry are good candidates for binary p-type transistors, however they require the introduction of compressive strain to enhance the transport properties. Here, we for the first time demonstrate epitaxial GaSb- GaAsxSb1-x core-shell nanowires with a compressively strained core. Both axial and hydrostatic strain in GaSb core have been measured by X-ray diffraction (XRD) and Raman scattering, respectively. The optimal sample, almost without plastic relaxation, has an axial strain of -0.88% and a hydrostatic strain of -1.46%, leading to a noticeable effect where the light hole band is calculated to be 33.4 meV above the heavy hole band at the Γ-point. This valence band feature offers more light holes to contribute the transport process, and thus may provide enhanced hole mobility by reducing both the interband scattering and the hole effective mass. Our results show that lattice-mismatched epitaxial core-shell heterostructures of high quality can also be realized in the promising yet demanding GaSb-based system.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Compressively-strained GaSb nanowires with core-shell heterostructures

Show Author's information Zhongyunshen Zhu1( )Johannes Svensson1Axel R. Persson2,3Reine Wallenberg2,3Andrei V. Gromov4Lars-Erik Wernersson1
Department of Electrical and Information Technology, Lund University, Box 118, 221 00 Lund, Sweden
Centre for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden
NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK

Abstract

GaSb-based nanowires in a gate-all-around geometry are good candidates for binary p-type transistors, however they require the introduction of compressive strain to enhance the transport properties. Here, we for the first time demonstrate epitaxial GaSb- GaAsxSb1-x core-shell nanowires with a compressively strained core. Both axial and hydrostatic strain in GaSb core have been measured by X-ray diffraction (XRD) and Raman scattering, respectively. The optimal sample, almost without plastic relaxation, has an axial strain of -0.88% and a hydrostatic strain of -1.46%, leading to a noticeable effect where the light hole band is calculated to be 33.4 meV above the heavy hole band at the Γ-point. This valence band feature offers more light holes to contribute the transport process, and thus may provide enhanced hole mobility by reducing both the interband scattering and the hole effective mass. Our results show that lattice-mismatched epitaxial core-shell heterostructures of high quality can also be realized in the promising yet demanding GaSb-based system.

Keywords: core-shell, heterostructure, nanowires, compressive strain, GaSb-GaAsxSb1-x, p-type transistors

References(56)

[1]
Tomioka, K.; Yoshimura, M.; Fukui, T. A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 2012, 488, 189-192.
[2]
Svensson, J.; Dey, A. W.; Jacobsson, D.; Wernersson, L. E. III-V nanowire complementary metal-oxide semiconductor transistors monolithically integrated on Si. Nano Lett. 2015, 15, 7898-7904.
[3]
Kilpi, O. P.; Svensson, J.; Wu, J.; Persson, A. R.; Wallenberg, R.; Lind, E.; Wernersson, L. E. Vertical InAs/InGaAs heterostructure metal-oxide- semiconductor field-effect transistors on Si. Nano Lett. 2017, 17, 6006-6010.
[4]
Jönsson, A.; Svensson, J.; Wernersson, L. E. A self-aligned gate-last process applied to all-III-V CMOS on Si. IEEE Electron Device Lett. 2018, 39, 935-938.
[5]
Lynall, D.; Nair, S. V.; Gutstein, D.; Shik, A.; Savelyev, I. G.; Blumin, M.; Ruda, H. E. Surface state dynamics dictating transport in InAs nanowires. Nano Lett. 2018, 18, 1387-1395.
[6]
del Alamo, J. A. Nanometre-scale electronics with III-V compound semiconductors. Nature 2011, 479, 317-323.
[7]
Kilpi, O. P.; Svensson, J.; Lind, E.; Wernersson, L. E. Electrical properties of vertical InAs/InGaAs heterostructure MOSFETs. IEEE J. Electron Devices Soc. 2019, 7, 70-75.
[8]
Dey, A. W.; Svensson, J.; Borg, B. M.; Ek, M.; Wernersson, L. E. Single InAs/GaSb nanowire low-power CMOS inverter. Nano Lett. 2012, 12, 5593-5597.
[9]
Oktyabrsky, S. P-type channel field-effect transistors. In Fundamentals of III-V Semiconductor MOSFETs. Oktyabrsky, S.; Ye, P., Eds.; Springer: Boston, MA, 2010; pp 349-378.
DOI
[10]
Borg, M.; Schmid, H.; Gooth, J.; Rossell, M. D.; Cutaia, D.; Knoedler, M.; Bologna, N.; Wirths, S.; Moselund, K. E.; Riel, H. High-mobility GaSb nanostructures cointegrated with InAs on Si. ACS Nano 2017, 11, 2554-2560.
[11]
Yang, Z. X.; Yip, S.; Li, D. P.; Han, N.; Dong, G. F.; Liang, X. G.; Shu, L.; Hung, T. F.; Mo, X. L.; Ho, J. C. Approaching the hole mobility limit of GaSb nanowires. ACS Nano 2015, 9, 9268-9275.
[12]
Yang, Z. X.; Liu, L. Z.; Yip, S.; Li, D. P.; Shen, L. F.; Zhou, Z. Y.; Han, N.; Hung, T. F.; Pun, E. Y. B.; Wu, X. L. et al. Complementary metal oxide semiconductor-compatible, high-mobility, ⟨111⟩-oriented GaSb nanowires enabled by vapor-solid-solid chemical vapor deposition. ACS Nano 2017, 11, 4237-4246.
[13]
Sun, J. M.; Peng, M.; Zhang, Y. S.; Zhang, L.; Peng, R.; Miao, C. C.; Liu, D.; Han, M. M.; Feng, R. F.; Ma, Y. D. et al. Ultrahigh hole mobility of Sn-catalyzed GaSb nanowires for high speed infrared photodetectors. Nano Lett. 2019, 19, 5920-5929.
[14]
Chen, Y. W.; Tan, Z.; Zhao, L. F.; Wang, J.; Liu, Y. Z.; Si, C.; Yuan, F.; Duan, W. H.; Xu, J. Mobility enhancement of strained GaSb p-channel metal-oxide-semiconductor field-effect transistors with biaxial compressive strain. Chin. Phys. B 2016, 25, 038504.
[15]
Bennett, B. R.; Ancona, M. G.; Boos, J. B.; Canedy, C. B.; Khan, S. A. Strained GaSb/AlAsSb quantum wells for p-channel field-effect transistors. J. Cryst. Growth 2008, 311, 47-53.
[16]
Bennett, B. R.; Chick, T. F.; Ancona, M. G.; Brad Boos, J. Enhanced hole mobility and density in GaSb quantum wells. Solid State Electron. 2013, 79, 274-280.
[17]
Borg, B. M.; Dick, K. A.; Ganjipour, B.; Pistol, M. E.; Wernersson, L. E.; Thelander, C. InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. Nano Lett. 2010, 10, 4080-4085.
[18]
Wang, X. Y.; Du, W. N.; Yang, X. G.; Zhang, X. W.; Yang, T. Self-catalyzed growth mechanism of InAs nanowires and growth of InAs/GaSb heterostructured nanowires on Si substrates. J. Cryst. Growth 2015, 426, 287-292.
[19]
Jeppsson, M.; Dick, K. A.; Wagner, J. B.; Caroff, P.; Deppert, K.; Samuelson, L.; Wernersson, L. E. GaAs/GaSb nanowire heterostructures grown by MOVPE. J. Cryst. Growth 2008, 310, 4115-4121.
[20]
Zamani, R. R.; Gorji Ghalamestani, S.; Niu, J.; Sköld, N.; Dick, K. A. Polarity and growth directions in Sn-seeded GaSb nanowires. Nanoscale 2017, 9, 3159-3168.
[21]
Ye, H.; Lu, P. F.; Yu, Z. Y.; Song, Y. X.; Wang, D. L.; Wang, S. M. Critical thickness and radius for axial heterostructure nanowires using finite-element method. Nano Lett. 2009, 9, 1921-1925.
[22]
Grönqvist, J.; Søndergaard, N.; Boxberg, F.; Guhr, T.; Åberg, S.; Xu, H. Q. Strain in semiconductor core-shell nanowires. J. Appl. Phys. 2009, 106, 053508.
[23]
Glas, F. Strain in nanowires and nanowire heterostructures. In Semiconductors and Semimetals. Morral, A. F. I.; Dayeh, S. A.; Jagadish, C., Eds.; Elsevier: United States, 2015; pp 79-123.
DOI
[24]
Lewis, R. B.; Nicolai, L.; Küpers, H.; Ramsteiner, M.; Trampert, A.; Geelhaar, L. Anomalous strain relaxation in core-shell nanowire heterostructures via simultaneous coherent and incoherent growth. Nano Lett. 2017, 17, 136-142.
[25]
Balaghi, L.; Bussone, G.; Grifone, R.; Hübner, R.; Grenzer, J.; Ghorbani-Asl, M.; Krasheninnikov, A. V.; Schneider, H.; Helm, M.; Dimakis, E. Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismatch. Nat. Commun. 2019, 10, 2793.
[26]
Göransson, D. J. O.; Borgström, M. T.; Huang, Y. Q.; Messing, M. E.; Hessman, D.; Buyanova, I. A.; Chen, W. M.; Xu, H. Q. Measurements of strain and bandgap of coherently epitaxially grown wurtzite InAsP-InP core-shell nanowires. Nano Lett. 2019, 19, 2674-2681.
[27]
Lazarev, S.; Göransson, D. J. O.; Borgström, M.; Messing, M. E.; Xu, H. Q.; Dzhigaev, D.; Yefanov, O. M.; Bauer, S.; Baumbach, T.; Feidenhans’l, R. et al. Revealing misfit dislocations in InAsxP1-x-InP core-shell nanowires by X-ray diffraction. Nanotechnology 2019, 30, 505703.
[28]
Sun, Y.; Thompson, S. E.; Nishida, T. Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 2007, 101, 104503.
[29]
Sun, Y. K.; Thompson, S. E.; Nishida, T. Strain Effect in Semiconductors: Theory and Device Applications; Springer: Boston, MA, 2010.
DOI
[30]
Gluschke, J. G.; Leijnse, M.; Ganjipour, B.; Dick, K. A.; Linke, H.; Thelander, C. Characterization of ambipolar GaSb/InAs core-shell nanowires by thermovoltage measurements. ACS Nano 2015, 9, 7033-7040.
[31]
Vasen, T.; Ramvall, P.; Afzalian, A.; Doornbos, G.; Holland, M.; Thelander, C.; Dick, K. A.; Wernersson, L. E.; Passlack, M. Vertical gate-all-around nanowire GaSb-InAs core-shell n-type tunnel FETs. Sci. Rep. 2019, 9, 202.
[32]
Ganjipour, B.; Ek, M.; Mattias Borg, B.; Dick, K. A.; Pistol, M. E.; Wernersson, L. E.; Thelander, C. Carrier control and transport modulation in GaSb/InAsSb core/shell nanowires. Appl. Phys. Lett. 2012, 101, 103501.
[33]
Salehzadeh, O.; Kavanagh, K. L.; Watkins, S. P. Growth and strain relaxation of GaAs and GaP nanowires with GaSb shells. J. Appl. Phys. 2013, 113, 134309.
[34]
Montazeri, M.; Fickenscher, M.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J.; Kang, J. H.; Gao, Q.; Tan, H. H.; Jagadish, C.; Guo, Y. et al. Direct measure of strain and electronic structure in GaAs/GaP core-shell nanowires. Nano Lett. 2010, 10, 880-886.
[35]
Ek, M.; Borg, B. M.; Johansson, J.; Dick, K. A. Diameter limitation in growth of III-Sb-containing nanowire heterostructures. ACS Nano 2013, 7, 3668-3675.
[36]
Yang, Z. X.; Han, N.; Fang, M.; Lin, H.; Cheung, H. Y.; Yip, S.; Wang, E. J.; Hung, T.; Wong, C. Y.; Ho, J. C. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat. Commun. 2014, 5, 5249.
[37]
Namazi, L.; Nilsson, M.; Lehmann, S.; Thelander, C.; Dick, K. A. Selective GaSb radial growth on crystal phase engineered InAs nanowires. Nanoscale 2015, 7, 10472-10481.
[38]
Borg, B. M.; Dick, K. A.; Eymery, J.; Wernersson, L. E. Enhanced Sb incorporation in InAsSb nanowires grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 2011, 98, 113104.
[39]
Koblmüller, G.; Hertenberger, S.; Vizbaras, K.; Bichler, M.; Bao, F.; Zhang, J. P.; Abstreiter, G. Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy. Nanotechnology 2010, 21, 365602.
[40]
Çakan, A.; Sevik, C.; Bulutay, C. Strained band edge characteristics from hybrid density functional theory and empirical pseudopotentials: GaAs, GaSb, InAs and InSb. J. Phys. D: Appl. Phys. 2016, 49, 085104.
[41]
Dayeh, S. A.; Tang, W.; Boioli, F.; Kavanagh, K. L.; Zheng, H.; Wang, J.; Mack, N. H.; Swadener, G.; Huang, J. Y.; Miglio, L. et al. Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires. Nano Lett. 2013, 13, 1869-1876.
[42]
Raychaudhuri, S.; Yu, E. T. Critical dimensions in coherently strained coaxial nanowire heterostructures. J. Appl. Phys. 2006, 99, 114308.
[43]
Aoki, K.; Anastassakis, E.; Cardona, M. Dependence of Raman frequencies and scattering intensities on pressure in GaSb, InAs, and InSb semiconductors. Phys. Rev. B 1984, 30, 681-687.
[44]
Arora, A. K.; Rajalakshmi, M.; Ravindran, T. R.; Sivasubramanian, V. Raman spectroscopy of optical phonon confinement in nanostructured materials. J. Raman Spectrosc. 2007, 38, 604-617.
[45]
Cerdeira, F.; Buchenauer, C. J.; Pollak, F. H.; Cardona, M. Stress-induced shifts of first-order Raman frequencies of diamond- and zinc-blende-type semiconductors. Phys. Rev. B 1972, 5, 580-593.
[46]
Van de Walle, C. G. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 1989, 39, 1871-1883.
[47]
Li, S. S. Scattering mechanisms and carrier mobilities in semiconductors. In Semiconductor Physical Electronics; Li, S. S., Ed.; Springer: New York, 2006; pp 211-245.
[48]
Silver, M.; Batty, W.; Ghiti, A.; O’Reilly, E. P. Strain-induced valence-subband splitting in III-V semiconductors. Phys. Rev. B 1992, 46, 6781-6788.
[49]
Nainani, A.; Kim, D.; Krishnamohan, T.; Saraswat, K. Hole mobility and its enhancement with strain for technologically relevant III-V semiconductors. In 2009 International Conference on Simulation of Semiconductor Processes and Devices, San Diego, CA, USA, 2009, pp 1-4.
DOI
[50]
Thompson, S.; Sun, G.; Wu, K.; Lim, J.; Nishida, T. Key differences for process-induced uniaxial vs. Substrate-induced biaxial stressed Si and Ge channel MOSFETs. In IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004. San Francisco, CA, USA, 2004, pp 221-224.
[51]
Goldthorpe, I. A.; Marshall, A. F.; McIntyre, P. C. Synthesis and strain relaxation of Ge-core/Si-shell nanowire arrays. Nano Lett. 2008, 8, 4081-4086.
[52]
Hashemi, P.; Gomez, L.; Canonico, M.; Hoyt, J. L. Electron transport in gate-all-around uniaxial tensile strained-Si nanowire n-MOSFETs. In 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2008, pp 1-4.
DOI
[53]
Signorello, G.; Karg, S.; Björk, M. T.; Gotsmann, B.; Riel, H. Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain. Nano Lett. 2013, 13, 917-924.
[54]
Boxberg, F.; Søndergaard, N.; Xu, H. Q. Elastic and piezoelectric properties of zincblende and wurtzite crystalline nanowire heterostructures. Adv. Mater. 2012, 24, 4692-4706.
[55]
Kavanagh, K. L. Misfit dislocations in nanowire heterostructures. Semicond. Sci. Technol. 2010, 25, 024006.
[56]
Biermanns, A.; Rieger, T.; Bussone, G.; Pietsch, U.; Grützmacher, D.; Ion Lepsa, M. Axial strain in GaAs/InAs core-shell nanowires. Appl. Phys. Lett. 2013, 102, 043109.
File
12274_2020_2889_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 19 March 2020
Revised: 27 April 2020
Accepted: 18 May 2020
Published: 19 June 2020
Issue date: September 2020

Copyright

© The Author(s) 2020

Acknowledgements

This work was supported by the Swedish Research Council (VR), and the Swedish Foundation for Strategic Research (SSF).

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return