Journal Home > Volume 14 , Issue 2

The challenge for single-atom catalysts in various C-C cross coupling reaction exists in the development of solid supporting materials. It has been desired to find a supporting material designed in molecular level to anchor a single-atom catalyst and provide high degree of dispersion and substrate access in aqueous media. Here, we prepared discrete cages of metal-organic polyhedra anchoring single Pd atom (MOP-BPY(Pd)) and successfully performed a Suzuki-Miyaura cross coupling reaction with various substrates in aqueous media. It was revealed that each tetrahedral cage of MOP-BPY(Pd) has 4.5 Pd atoms on average and retained its high degree of dispersion up to 3 months in water. The coupling efficiencies of the Suzuki-Miyaura cross coupling reaction exhibited more than 90.0% for various substrates we have tested in the aqueous media, which is superior to those of the molecular Pd complex and metal-organic framework (MOF) anchoring Pd atoms. Moreover, MOP-BPY(Pd) was successfully recovered and recycled without performance degradation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single-atom Pd catalyst anchored on Zr-based metal-organic polyhedra for Suzuki-Miyaura cross coupling reactions in aqueous media

Show Author's information Seongsoo Kim1,§Seohyeon Jee2,§Kyung Min Choi2,( )Dong-Sik Shin2,( )
Division of Chemical and Bioengineering, Kangwon National University, Gangwon-do 24341, Republic of Korea
Department of Chemical and Biological Engineering, Sookmyung Women’s University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea

§Seongsoo Kim and Seohyeon Jee contributed equally to this work.

Abstract

The challenge for single-atom catalysts in various C-C cross coupling reaction exists in the development of solid supporting materials. It has been desired to find a supporting material designed in molecular level to anchor a single-atom catalyst and provide high degree of dispersion and substrate access in aqueous media. Here, we prepared discrete cages of metal-organic polyhedra anchoring single Pd atom (MOP-BPY(Pd)) and successfully performed a Suzuki-Miyaura cross coupling reaction with various substrates in aqueous media. It was revealed that each tetrahedral cage of MOP-BPY(Pd) has 4.5 Pd atoms on average and retained its high degree of dispersion up to 3 months in water. The coupling efficiencies of the Suzuki-Miyaura cross coupling reaction exhibited more than 90.0% for various substrates we have tested in the aqueous media, which is superior to those of the molecular Pd complex and metal-organic framework (MOF) anchoring Pd atoms. Moreover, MOP-BPY(Pd) was successfully recovered and recycled without performance degradation.

Keywords: metal-organic polyhedra, Suzuki-Miyaura cross coupling reaction, structure characterization, aqueous phase reaction, high-degree of dispersion

References(53)

[1]
L. L. Zhang,; A. Q. Wang,; J. T. Miller,; X. Y. Liu,; X. F. Yang,; W. T. Wang,; L. Li,; Y. Q. Huang,; C. Y. Mou,; T. Zhang, Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water. ACS Catal. 2014, 4, 1546-1553.
[2]
X. Y. Zhang,; Z. C. Sun,; B. Wang,; Y. Tang,; L. Nguyen,; Y. T. Li,; F. F. Tao, C-C coupling on single-atom-based heterogeneous catalyst. J. Am. Chem. Soc. 2018, 140, 954962.
[3]
E. Fernández,; M. A. Rivero-Crespo,; I. Domínguez,; P. Rubio-Marqués,; J. Oliver-Meseguer,; L. C. Liu,; M. Cabrero-Antonino,; R. Gavara,; J. C. Hernández-Garrido,; M. Boronat, et al. Base-controlled Heck, Suzuki, and Sonogashira reactions catalyzed by ligand-free platinum or palladium single atom and sub-nanometer clusters. J. Am. Chem. Soc. 2019, 141, 1928-1940.
[4]
L. X. Yin,; J. Liebscher, Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev. 2007, 107, 133-173.
[5]
P. Veerakumar,; P. Thanasekaran,; K. L. Lu,; K. C. Lin,; S. Rajagopal, Computational studies of versatile heterogeneous palladium-catalyzed Suzuki, Heck, and Sonogashira coupling reactions. ACS Sustain. Chem. Eng. 2017, 5, 8475-8490.
[6]
R. Bernini,; S. Cacchi,; G. Fabrizi,; G. Forte,; F. Petrucci,; A. Prastaro,; S. Niembro,; A. Shafir,; A. Vallribera, Perfluoro-tagged, phosphine-free palladium nanoparticles supported on silica gel: Application to alkynylation of aryl halides, Suzuki-Miyaura cross-coupling, and Heck reactions under aerobic conditions. Green Chem. 2010, 12, 150-158.
[7]
A. Biffis,; M. Zecca,; M. Basato, Palladium metal catalysts in Heck C-C coupling reactions. J. Mol. Catal. A Chem. 2001, 173, 249-274.
[8]
Y. Suzaki,; Y. Kobayashi,; Y. Tsuchido,; K. Osakada, Pd-catalyzed Sonogashira coupling in aqueous media. Observation of micelles that contain substrates and catalyst. Mol. Catal. 2019, 466, 106-111.
[9]
F. Christoffel,; T. R. Ward, Palladium-catalyzed heck cross-coupling reactions in water: A comprehensive review. Catal. Lett. 2018, 148, 489-511.
[10]
B. Lakshminarayana,; L. Mahendar,; P. Ghosal,; G. Satyanarayana,; C. Subrahmanyam, Nano-sized recyclable PdO supported carbon nanostructures for Heck reaction: Influence of carbon materials. ChemistrySelect 2017, 2, 2700-2707.
[11]
T. P. N. Tran,; A. Thakur,; D. X. Trinh,; A. T. N. Dao,; T. Taniike, Design of Pd@graphene oxide framework nanocatalyst with improved activity and recyclability in Suzuki-Miyaura cross-coupling reaction. Appl. Catal. A: Gen 2018, 549, 60-67.
[12]
S. Diyarbakir,; H. S. Can,; O. Metin, Reduced graphene oxide-supported CuPd alloy nanoparticles as efficient catalysts for the Sonogashira cross-coupling reactions. ACS Appl. Mater. Interfaces 2015, 7, 3199-3206.
[13]
V. Sharavath,; S. Ghosh, Palladium nanoparticles on noncovalently functionalized graphene-based heterogeneous catalyst for the Suzuki-Miyaura and Heck-Mizoroki reactions in water. RSC Adv. 2014, 4, 48322-48330.
[14]
G. M. Scheuermann,; L. Rumi,; P. Steurer,; W. Bannwarth,; R. Mülhaupt, Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2009, 131, 8262-8270.
[15]
K. Balaswamy,; P. C. Pullaiah,; K. Srinivas,; M. M. Rao, Polystyrene-supported palladium(II) N,N-dimethylethylenediamine complex: A recyclable catalyst for Suzuki-Miyaura cross-coupling reactions in water. Inorg. Chim. Acta 2014, 423, 95-100.
[16]
S. Moussa,; A. R. Siamaki,; B. F. Gupton,; M. S. El-Shall, Pd-partially reduced graphene oxide catalysts (Pd/PRGO): Laser synthesis of Pd nanoparticles supported on PRGO nanosheets for carbon-carbon cross coupling reactions. ACS Catal. 2012, 2, 145-154.
[17]
K. A. De Castro,; H. Rhee, Resin-immobilized palladium nanoparticle catalysts for Suzuki-Miyaura cross-coupling reaction in aqueous media. J. Incl. Phenom. Macrocycl. Chem. 2015, 82, 13-24.
[18]
L. Y. Chen,; S. Rangan,; J. Li,; H. F. Jiang,; Y. W. Li, A molecular Pd(II) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for C-Cl bond activation. Green Chem. 2014, 16, 3978-3985.
[19]
D. Nagai,; H. Goto, Effective heterogeneous catalyst for Suzuki-Miyaura cross-coupling in aqueous media: Melamine cyanurate complex containing Pd species. Bull. Chem. Soc. Jpn. 2018, 91, 147-152.
[20]
Y. Yang,; A. C. Reber,; S. E. Gilliland III,; C. E. Castano,; B. F. Gupton,; S. N. Khanna, More than just a support: Graphene as a solid-state ligand for palladium-catalyzed cross-coupling reactions. J. Catal. 2018, 360, 20-26.
[21]
M. G. Dighe,; S. L. Lonkar,; M. S. Degani, Mechanistic insights into palladium leaching in novel Pd/C-catalyzed boron-Heck reaction of arylboronic acid. Synlett 2013, 24, 347-350.
[22]
P. Veerakumar,; P. Thanasekaran,; K. L. Lu,; S. B. Liu,; S. Rajagopal, Functionalized silica matrices and palladium: A versatile heterogeneous catalyst for Suzuki, Heck, and Sonogashira reactions. ACS Sustain. Chem. Eng. 2017, 5, 6357-6376.
[23]
S. MacQuarrie,; J. H. Horton,; J. Barnes,; K. McEleney,; H. P. Loock,; C. M. Crudden, Visual observation of redistribution and dissolution of palladium during the Suzuki-Miyaura reaction. Angew. Chem., Int. Ed. 2008, 47, 3279-3282.
[24]
J. M. Richardson,; C. W. Jones, Strong evidence of solution-phase catalysis associated with palladium leaching from immobilized thiols during Heck and Suzuki coupling of aryl iodides, bromides, and chlorides. J. Catal. 2007, 251, 80-93.
[25]
Y. B. Huang,; Z. L. Zheng,; T. F. Liu,; J. Lü,; Z. J. Lin,; H. F. Li,; R. Cao, Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki-Miyaura cross-coupling reaction. Catal. Commun. 2011, 14, 27-31.
[26]
R. Kardanpour,; S. Tangestaninejad,; V. Mirkhani,; M. Moghadam,; I. Mohammadpoor-Baltork,; A. R. Khosropour,; F. Zadehahmadi, Highly dispersed palladium nanoparticles supported on amino functionalized metal-organic frameworks as an efficient and reusable catalyst for Suzuki cross-coupling reaction. J. Organomet. Chem. 2014, 761, 127-133.
[27]
P. Puthiaraj,; W. S. Ahn, Highly active palladium nanoparticles immobilized on NH2-MIL-125 as efficient and recyclable catalysts for Suzuki-Miyaura cross coupling reaction. Catal. Commun. 2015, 65, 91-95.
[28]
H. H. Fei,; S. M. Cohen, A robust, catalytic metal-organic framework with open 2,2'-bipyridine sites. Chem. Commun. 2014, 50, 4810-4812.
[29]
D. Nam,; J. Huh,; J. Lee,; J. H. Kwak,; H. Y. Jeong,; K. Choi,; W. Choe, Cross-linking Zr-based metal-organic polyhedra via postsynthetic polymerization. Chem. Sci. 2017, 8, 7765-7771.
[30]
S. Mollick,; S. Fajal,; S. Mukherjee,; S. K. Ghosh, Stabilizing metal-organic polyhedra (MOP): Issues and strategies. Chem.—Asian J. 2019, 14, 3096-3108.
[31]
W. Wang,; Y. X. Wang,; H. B. Yang, Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 2016, 45, 2656-2693.
[32]
J. R. Li,; H. C. Zhou, Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra. Nat. Chem. 2010, 2, 893-898.
[33]
D. J. Tranchemontagne,; Z. Ni,; M. O'Keeffe,; O. M. Yaghi, Reticular chemistry of metal-organic polyhedra. Angew. Chem., Int. Ed. 2008, 47, 5136-5147.
[34]
Z. Lu,; C. B. Knobler,; H. Furukawa,; B. Wang,; G. N. Liu,; O. M. Yaghi, Synthesis and structure of chemically stable metal-organic polyhedra. J. Am. Chem. Soc. 2009, 131, 12532-12533.
[35]
W. H. Xing,; H. Y. Li,; X. Y. Dong,; S. Q. Zang, Robust multifunctional Zr-based metal-organic polyhedra for high proton conductivity and selective CO2 capture. J. Mater. Chem. A 2018, 6, 7724-7730.
[36]
Z. F. Ju,; G. L. Liu,; Y. S. Chen,; D. Q. Yuan,; B. L. Chen, From coordination cages to a stable crystalline porous hydrogen-bonded framework. Chem.—Eur. J. 2017, 23, 4774-4777.
[37]
G. L. Liu,; Z. F. Ju,; D. Q. Yuan,; M. C. Hong, In situ construction of a coordination zirconocene tetrahedron. Inorg. Chem. 2013, 52, 13815-13817.
[38]
G. L. Liu,; M. Zeller,; K. Z. Su,; J. D. Pang,; Z. F. Ju,; D. Q. Yuan,; M. C. Hong, Controlled orthogonal self-assembly of heterometal-decorated coordination cages. Chem.—Eur. J. 2016, 22, 17345-17350.
[39]
H. S. Lee,; S. Jee,; R. Kim,; H. T. Bui,; B. Kim,; J. K. Kim,; K. S. Park,; W. Choi,; W. Kim; K. M. Choi, A highly active, robust photocatalyst heterogenized in discrete cages of metal-organic polyhedra for CO2 reduction. Energy Environ. Sci. 2020, 13, 519-526
[40]
K. M. Choi,; H. M. Jeong,; J. H. Park,; Y. B. Zhang,; J. K. Kang,; O. M. Yaghi, Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 2014, 8, 7451-7457.
[41]
Y. H. Kang,; X. D. Liu,; N. Yan,; Y. Jiang,; X. Q. Liu,; L. B. Sun,; J. R. Li, Fabrication of isolated metal-organic polyhedra in confined cavities: Adsorbents/catalysts with unusual dispersity and activity. J. Am. Chem. Soc. 2016, 138, 6099-6102.
[42]
W. G. Lin,; D. Q. Yuan,; A. Yakovenko,; H. C. Zhou, Surface functionalization of metal-organic polyhedron for homogeneous cyclopropanation catalysis. Chem. Commun. 2011, 47, 4968-4970.
[43]
H. Vardhan,; F. Verpoort, Metal-organic polyhedra: Catalysis and reactive intermediates. Adv. Synth. Catal. 2015, 357, 1351-1368.
[44]
K. Maity,; C. K. Karan,; K. Biradha, Porous metal-organic polyhedral framework containing cuboctahedron cages as SBUs with high affinity for H2 and CO2 sorption: A heterogeneous catalyst for chemical fixation of CO2. Chem.—Eur. J. 2018, 24, 10988-10993.
[45]
N. Ahmad,; H. A. Younus,; A. H. Chughtai,; K. Van Hecke,; M. Danish,; Z. Gaoke,; F. Verpoort, Development of mixed metal metal-organic polyhedra networks, colloids, and MOFs and their pharmacokinetic applications. Sci. Rep. 2017, 7, 832.
[46]
J. Sherwood,; J. H. Clark,; I. J. S. Fairlamb,; J. M. Slattery, Solvent effects in palladium catalysed cross-coupling reactions. Green Chem. 2019, 21, 2164-2213.
[47]
C. F. R. A. C. Lima,; A. S. M. C. Rodrigues,; V. L. M. Silva,; A. M. S. Silva,; L. M. N. B. F. Santos, Role of the base and control of selectivity in the Suzuki-Miyaura cross-coupling reaction. ChemCatChem. 2014, 6, 1291-1302.
[48]
H. C. Zhang,; F. Y. Kwong,; Y. Tian,; K. S. Chan, Base and cation effects on the Suzuki cross-coupling of bulky arylboronic acid with halopyridines: Synthesis of pyridylphenols. J. Org. Chem. 1998, 63, 6886-6890.
[49]
G. S. Remya,; C. H. Suresh, Quantification and classification of substituent effects in organic chemistry: A theoretical molecular electrostatic potential study. Phys. Chem. Chem. Phys. 2016, 18, 20615-20626.
[50]
A. F. Littke,; C. Y. Dai,; G. C. Fu, Versatile catalysts for the Suzuki cross-coupling of arylboronic acids with aryl and vinyl halides and triflates under mild conditions. J. Am. Chem. Soc. 2000, 122, 4020-4028.
[51]
T. Watanabe,; N. Miyaura,; A. Suzuki, Synthesis of sterically hindered biaryls via the palladium-catalyzed cross-coupling reaction of arylboronic acids or their esters with haloarenes. Synlett 1992, 1992, 207-210.
[52]
J. H. Fournier,; T. Maris,; J. D. Wuest,; W. Z. Guo,; E. Galoppini, Molecular tectonics. Use of the hydrogen bonding of boronic acids to direct supramolecular construction. J. Am. Chem. Soc. 2003, 125, 1002-1006.
[53]
A. Dhakshinamoorthy,; M. Alvaro,; Y. K. Hwang,; Y. K. Seo,; A. Corma,; H. Garcia, Intracrystalline diffusion in metal organic framework during heterogeneous catalysis: Influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions. Dalton Trans. 2011, 40, 10719-10724.
File
12274_2020_2885_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 January 2020
Revised: 29 April 2020
Accepted: 16 May 2020
Published: 21 June 2020
Issue date: February 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This research was supported by the Basic Science Research Program (No. NRF-2019R1A2C4069764) and by Convergent Technology R&D Program for Human Augmentation (No. 2019M3C1B8077549) through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT.

Return