Journal Home > Volume 13 , Issue 9

Carbon dots (CDs) with solvatochromic emission colors in different solvents have attracted much attention as a new class of luminescent nanomaterial owing to their facile synthesis and low production cost. In this work, we prepared two kinds of CDs with solvatochromic emissions: green emission CDs (G-CDs) and multicolor emission CDs (M-CDs). G-CDs synthesized from o-phenylenediamine exhibited weak photoluminescence emission (quantum yield 2.8%-6.1%) and 39 nm solvatochromic shifts (492-531 nm). In contrast, M-CDs prepared from o-phenylenediamine and 4-aminophenol showed 87 nm solvatochromic shift range (505-592 nm) and much higher photoluminescence quantum yield (18.4%-32.5%). The two CDs exhibited different emission, absorption, and photoluminescence lifetime. The origin of solvatochromic shifts and the formation mechanism of CDs were demonstrated by analyzing the structures and compositions of two CDs. High percentages of pyrrolic nitrogen and amino nitrogen make wider solvatochromic shifts and higher quantum yields. The results were well supported by density functional theory calculations. This effective strategy to expand solvatochromic shift range and improve quantum yields could open a new window to prepare satisfied solvatochromic carbon dots.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Wide emission shifts and high quantum yields of solvatochromic carbon dots with rich pyrrolic nitrogen

Show Author's information Hua Wang1Philip Haydel1Ning Sui2Lina Wang2Yan Liang3( )William W. Yu1,2( )
Department of Chemistry and Physics, Louisiana State University, Shreveport, LA 71115, USA
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

Abstract

Carbon dots (CDs) with solvatochromic emission colors in different solvents have attracted much attention as a new class of luminescent nanomaterial owing to their facile synthesis and low production cost. In this work, we prepared two kinds of CDs with solvatochromic emissions: green emission CDs (G-CDs) and multicolor emission CDs (M-CDs). G-CDs synthesized from o-phenylenediamine exhibited weak photoluminescence emission (quantum yield 2.8%-6.1%) and 39 nm solvatochromic shifts (492-531 nm). In contrast, M-CDs prepared from o-phenylenediamine and 4-aminophenol showed 87 nm solvatochromic shift range (505-592 nm) and much higher photoluminescence quantum yield (18.4%-32.5%). The two CDs exhibited different emission, absorption, and photoluminescence lifetime. The origin of solvatochromic shifts and the formation mechanism of CDs were demonstrated by analyzing the structures and compositions of two CDs. High percentages of pyrrolic nitrogen and amino nitrogen make wider solvatochromic shifts and higher quantum yields. The results were well supported by density functional theory calculations. This effective strategy to expand solvatochromic shift range and improve quantum yields could open a new window to prepare satisfied solvatochromic carbon dots.

Keywords: density functional theory (DFT) calculation, quantum yield, carbon dot, solvatochromism, pyrrolic nitrogen

References(36)

[1]
Ding, C. Q.; Zhu, A. W.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 2014, 47, 20-30.
[2]
Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E. P.; Zboril, R.; Rogach, A. L. Carbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 2014, 9, 590-603.
[3]
Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953-3957.
[4]
Yang, S. T.; Cao, L.; Luo, P. G.; Lu, F. S.; Wang, X.; Wang, H. F.; Meziani, M. J.; Liu, Y. F.; Qi, G.; Sun, Y. P. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009, 131, 11308-11309.
[5]
Chizhik, A. M.; Stein, S.; Dekaliuk, M. O.; Battle, C.; Li, W. X.; Huss, A.; Platen, M.; Schaap, I. A. T.; Gregor, I.; Demchenko, A. P. et al. Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots. Nano Lett. 2016, 16, 237-242.
[6]
Zhang, X. Y.; Zhang, Y.; Wang, Y.; Kalytchuk, S.; Kershaw, S. V.; Wang, Y. H.; Wang, P.; Zhang, T. Q.; Zhao, Y.; Zhang, H. Z. et al. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano 2013, 7, 11234-11241.
[7]
Qu, S. N.; Zhou, D.; Li, D.; Ji, W. Y.; Jing, P. T.; Han, D.; Liu, L.; Zeng, H. B.; Shen, D. Z. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv. Mater. 2016, 28, 3516-3521.
[8]
Gao, D.; Zhao, H.; Chen, X.; Fan, H. Recent advance in red-emissive carbon dots and their photoluminescent mechanisms. Mater. Today Chem. 2018, 9, 103-113.
[9]
Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726-6744.
[10]
Choi, Y.; Kim, S.; Choi, Y.; Song, J.; Kwon, T. H.; Kwon, O. H.; Kim, B. S. Morphology tunable hybrid carbon nanosheets with solvatochromism. Adv. Mater. 2017, 29, 1701075.
[11]
Wang, H.; Sun, C.; Chen, X. R.; Zhang, Y.; Colvin, V. L.; Rice, Q.; Seo, J.; Feng, S. Y.; Wang, S. N.; Yu, W. W. Excitation wavelength independent visible color emission of carbon dots. Nanoscale 2017, 9, 1909-1915.
[12]
Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed. 2015, 54, 5360-5363.
[13]
Hu, S. L.; Trinchi, A.; Atkin, P.; Cole, I. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew. Chem., Int. Ed. 2015, 54, 2970-2974.
[14]
Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663-1667.
[15]
Zhan, J.; Geng, B. J.; Wu, K.; Xu, G.; Wang, L.; Guo, R. Y.; Lei, B.; Zheng, F. F.; Pan, D. Y.; Wu, M. H. A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence. Carbon 2018, 130, 153-163.
[16]
Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.
[17]
Jiang, K.; Zhang, L.; Lu, J. F.; Xu, C. X.; Cai, C. Z.; Lin, H. W. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting. Angew. Chem., Int. Ed. 2016, 55, 7231-7235.
[18]
Ren, J. K.; Sun, J. B.; Sun, X. M.; Song, R.; Xie, Z.; Zhou, S. Y. Precisely controlled up/down-conversion liquid and solid state photoluminescence of carbon dots. Adv. Opt. Mater. 2018, 6, 1800115.
[19]
Reckmeier, C. J.; Wang, Y.; Zboril, R.; Rogach, A. L. Influence of doping and temperature on solvatochromic shifts in optical spectra of carbon dots. J. Phys. Chem. C 2016, 120, 10591-10604.
[20]
Sciortino, A.; Marino, E.; van Dam, B.; Schall, P.; Cannas, M.; Messina, F. Solvatochromism unravels the emission mechanism of carbon nanodots. J. Phys. Chem. Lett. 2016, 7, 3419-3423.
[21]
Basu, N.; Mandal, D. Solvatochromic response of carbon dots: Evidence of solvent interaction with different types of emission centers. J. Phys. Chem. C 2018, 122, 18732-18741.
[22]
Klymchenko, A. S. Solvatochromic and fluorogenic dyes as environment-sensitive probes: Design and biological applications. Acc. Chem. Res. 2017, 50, 366-375.
[23]
Mukherjee, S.; Prasad, E.; Chadha, A. H-bonding controls the emission properties of functionalized carbon Nano-dots. Phys. Chem. Chem. Phys. 2017, 19, 7288-7296.
[24]
Han, K. L.; Zhao, G. J. Hydrogen Bonding and Transfer in the Excited State; John Wiley & Sons: New York, 2011.
DOI
[25]
Gierschner, J.; Cornil, J.; Egelhaaf, H. J. Optical bandgaps of π-conjugated organic materials at the polymer limit: Experiment and theory. Adv. Mater. 2007, 19, 173-191.
[26]
Hashemi, D.; Ma, X.; Ansari, R.; Kim, J.; Kieffer, J. Design principles for the energy level tuning in donor/acceptor conjugated polymers. Phys. Chem. Chem. Phys. 2019, 21, 789-799.
[27]
Kim, B. G.; Ma, X.; Chen, C.; Le, Y.; Coir, E. W.; Hashemi, H.; Aso, Y.; Green, P. F.; Kieffer, J.; Kim, J. Energy level modulation of HOMO, LUMO, and band-gap in conjugated polymers for organic photovoltaic applications. Adv. Funct. Mater. 2013, 23, 439-445.
[28]
Eakins, G. L.; Alford, J. S.; Tiegs, B. J.; Breyfogle, B. E.; Stearman, C. J. Tuning HOMO-LUMO levels: Trends leading to the design of 9-fluorenone scaffolds with predictable electronic and optoelectronic properties. J. Phys. Org. Chem. 2011, 24, 1119-1128.
[29]
Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800-7804.
[30]
Jin, S. H.; Kim, D. H.; Jun, G. H.; Hong, S. H.; Jeon, S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 2013, 7, 1239-1245.
[31]
Chen, X. X.; Jin, Q. Q.; Wu, L. Z.; Tung, C. H.; Tang, X. J. Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications. Angew. Chem., Int. Ed. 2014, 53, 12542-12547.
[32]
Sarkar, S.; Sudolska, M.; Dubecký, M.; Reckmeier, C. J.; Rogach, A. L.; Zboril, R.; Otyepka, M. Graphitic nitrogen doping in carbon dots causes red-shifted absorption. J. Phys. Chem. C 2016, 120, 1303-1308.
[33]
Holá, K.; Sudolská, M.; Kalytchuk, S.; Nachtigallová, D.; Rogach, A. L.; Otyepka, M.; Zbořil, R. Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 2017, 11, 12402-12410.
[34]
Ong, W. J.; Putri, L. K.; Tan, Y. C.; Tan, L. L.; Li, N.; Ng, Y. H.; Wen, X. M.; Chai, S. P. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Res. 2017, 10, 1673-1696.
[35]
Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496-11500.
[36]
Yang, C. H.; Zhu, S. J.; Li, Z. L.; Li, Z.; Chen, C.; Sun, L.; Tang, W.; Liu, R.; Sun, Y.; Yu, M. Nitrogen-doped carbon dots with excitation-independent long-wavelength emission produced by a room-temperature reaction. Chem. Commun. 2016, 52, 11912-11914.
File
12274_2020_2884_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 March 2020
Revised: 15 May 2020
Accepted: 17 May 2020
Published: 08 June 2020
Issue date: September 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We appreciate the financial supports from the Board or Regent Supporting Fund (BORSF) Endowed Professorship, the Lousiana State University Shreveport (LSUS) R&D Funds, the Qingdao Municipal Science and Technology Commission (No. 16-5-1-86-jch), and the Scientific Research Foundation of Qingdao University of Science and Technology (QUST) (No. 210/010022914).

Return