Journal Home > Volume 13 , Issue 9

Owing to enhanced charge transport efficiency arising from the ultrathin nature, two-dimensional (2D) organic semiconductor single crystals (OSSCs) are emerging as a fascinating platform for high-performance organic field-effect transistors (OFETs). However, "coffee-ring" effect induced by an evaporation-induced convective flow near the contact line hinders the large-area growth of 2D OSSCs through a solution process. Here, we develop a new strategy of suppressing the "coffee-ring" effect by using an organic semiconductor: polymer blend solution. With the high-viscosity polymer in the organic solution, the evaporation-induced flow is remarkably weakened, ensuring the uniform molecule spreading for the 2D growth of the OSSCs. As an example, wafer-scale growth of crystalline film consisting of few-layered 2,7-didecylbenzothienobenzothiophene (C10-BTBT) crystals was successfully accomplished via blade coating. OFETs based on the crystalline film exhibited a maximum hole mobility up to 12.6 cm2·V-1·s-1, along with an average hole mobility as high as 8.2 cm2·V-1·s-1. Our work provides a promising strategy for the large-area growth of 2D OSSCs toward high-performance organic electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controlled 2D growth of organic semiconductor crystals by suppressing "coffee-ring" effect

Show Author's information Wei Wang1,§Bei Lu1,§Wei Deng1Xiujuan Zhang1( )Zhengjun Lu1Di Wu2Jiansheng Jie1( )Xiaohong Zhang1
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China

§ Wei Wang and Bei Lu contributed equally to this work.

Abstract

Owing to enhanced charge transport efficiency arising from the ultrathin nature, two-dimensional (2D) organic semiconductor single crystals (OSSCs) are emerging as a fascinating platform for high-performance organic field-effect transistors (OFETs). However, "coffee-ring" effect induced by an evaporation-induced convective flow near the contact line hinders the large-area growth of 2D OSSCs through a solution process. Here, we develop a new strategy of suppressing the "coffee-ring" effect by using an organic semiconductor: polymer blend solution. With the high-viscosity polymer in the organic solution, the evaporation-induced flow is remarkably weakened, ensuring the uniform molecule spreading for the 2D growth of the OSSCs. As an example, wafer-scale growth of crystalline film consisting of few-layered 2,7-didecylbenzothienobenzothiophene (C10-BTBT) crystals was successfully accomplished via blade coating. OFETs based on the crystalline film exhibited a maximum hole mobility up to 12.6 cm2·V-1·s-1, along with an average hole mobility as high as 8.2 cm2·V-1·s-1. Our work provides a promising strategy for the large-area growth of 2D OSSCs toward high-performance organic electronics.

Keywords: organic field-effect transistors, two-dimensional (2D) organic semiconductor single crystals, two-dimensional (2D) growth mode, coffee-ring effect

References(40)

[1]
Yang, F. X.; Cheng, S. S.; Zhang, X. T.; Ren, X. C.; Li, R. J.; Dong, H. L.; Hu, W. P. 2D Organic materials for optoelectronic applications. Adv. Mater. 2018, 30, 1702415.
[2]
Park, S. K.; Kim, J. H.; Park, S. Y. Organic 2D optoelectronic crystals: Charge transport, emerging functions, and their design perspective. Adv. Mater. 2018, 30, 1704759.
[3]
Deng, W.; Zhang, X. J.; Jia, R. F.; Huang, L. M.; Zhang, X. H.; Jie, J. S. Organic molecular crystal-based photosynaptic devices for an artificial visual-perception system. NPG Asia Mater. 2019, 11, 77.
[4]
Zhang, Y. H.; Qiao, J. S.; Gao, S.; Hu, F. R.; He, D. W.; Wu, B.; Yang, Z. Y.; Xu, B. C.; Li, Y.; Shi, Y. et al. Probing carrier transport and structure-property relationship of highly ordered organic semiconductors at the two-dimensional limit. Phys. Rev. Lett. 2016, 116, 016602.
[5]
Zhao, H. J.; Zhao, Y. B.; Song, Y. X.; Zhou, M.; Lv, W.; Tao, L.; Feng, Y. Z.; Song, B. Y.; Ma, Y.; Zhang, J. Q. et al. Strong optical response and light emission from a monolayer molecular crystal. Nat. Commun. 2019, 10, 5589.
[6]
Yamamura, A.; Watanabe, S.; Uno, M.; Mitani, M.; Mitsui, C.; Tsurumi, J.; Isahaya, N.; Kanaoka, Y.; Okamoto, T.; Takeya, J. Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation. Sci. Adv. 2018, 4, eaao5758.
[7]
Li, H. Y.; Shi, Y. J.; Han, G. C.; Liu, J.; Zhang, J.; Li, C. L.; Liu, J.; Yi, Y. P.; Li, T.; Gao, X. K. et al. Monolayer two-dimensional molecular crystals for an ultrasensitive OFET-based chemical sensor. Angew. Chem., Int. Ed. 2020, 59, 4380-4384.
[8]
Chen, H. L.; Dong, S. H.; Bai, M. L.; Cheng, N. Y.; Wang, H.; Li, M. L.; Du, H. W.; Hu, S. X.; Yang, Y. L.; Yang, T. Y. et al. Solution-processable, low-voltage, and high-performance monolayer field-effect transistors with aqueous stability and high sensitivity. Adv. Mater. 2015, 27, 2113-2120.
[9]
Peng, B. Y.; Huang, S. Y.; Zhou, Z. W.; Chan, P. K. L. Solution-processed monolayer organic crystals for high-performance field-effect transistors and ultrasensitive gas sensors. Adv. Funct. Mater. 2017, 27, 1700999.
[10]
He, D. W.; Qiao, J. S.; Zhang, L. L.; Wang, J. Y.; Lan, T.; Qian, J.; Li, Y.; Shi, Y.; Chai, Y.; Lan, W. et al. Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride. Sci. Adv. 2017, 3, e1701186.
[11]
Liu, J.; Jiang, L.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Monolayer organic field-effect transistors. Sci. China Chem. 2019, 62, 313-330.
[12]
Deng, W.; Lu, B.; Mao, J.; Lu, Z. J.; Zhang, X. J.; Jie, J. S. Precise positioning of organic semiconductor single crystals with two-component aligned structure through 3D wettability-induced sequential assembly. ACS Appl. Mater. Interfaces 2019, 11, 36205-36212.
[13]
Jiang, L.; Dong, H. L.; Meng, Q.; Li, H. X.; He, M.; Wei, Z. M.; He, Y. D.; Hu, W. P. Millimeter-sized molecular monolayer two-dimensional crystals. Adv. Mater. 2011, 23, 2059-2063.
[14]
Shi, Y. J.; Jiang, L.; Liu, J.; Tu, Z. Y.; Hu, Y. Y.; Wu, Q. H.; Yi, Y. P.; Gann, E.; McNeill, C. R.; Li, H. X. et al. Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nat. Commun. 2018, 9, 2933.
[15]
Deng, W.; Zhang, X. J.; Dong, H. L.; Jie, J. S.; Xu, X. Z.; Liu, J.; He, L.; Xu, L.; Hu, W. P.; Zhang, X. H. Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors. Mater. Today 2019, 24, 17-25.
[16]
Li, L. Q.; Gao, P.; Wang, W. C.; Müllen, K.; Fuchs, H.; Chi, L. F. Growth of ultrathin organic semiconductor microstripes with thickness control in the monolayer precision. Angew. Chem., Int. Ed. 2013, 52, 12530-12535.
[17]
Deng, W.; Zhang, X. J.; Wang, L.; Wang, J. C.; Shang, Q. X.; Zhang, X. H.; Huang, L. M.; Jie, J. S. Wafer-scale precise patterning of organic single-crystal nanowire arrays via a photolithography-assisted spin-coating method. Adv. Mater. 2015, 27, 7305-7312.
[18]
Diao, Y.; Tee, B. C. K.; Giri, G.; Xu, J.; Kim, D. H.; Becerril, H. A.; Stoltenberg, R. M.; Lee, T. H.; Xue, G.; Mannsfeld, S. C. B. et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater. 2013, 12, 665-671.
[19]
Deng, W.; Zhang, X. J.; Huang, L. M.; Xu, X. Z.; Wang, L.; Wang, J. C.; Shang, Q. X.; Lee, S. T.; Jie, J. S. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 2016, 28, 2201-2208.
[20]
Deng, W.; Jie, J. S.; Xu, X. Z.; Xiao, Y. L.; Lu, B.; Zhang, X. J.; Zhang, X. H. A microchannel-confined crystallization strategy enables blade coating of perovskite single crystal arrays for device integration. Adv. Mater. 2020, 32, 1908340.
[21]
Wang, Q. Q.; Yang, F. X.; Zhang, Y.; Chen, M. X.; Zhang, X. T.; Lei, S. B.; Li, R. J.; Hu, W. P. Space-confined strategy toward large-area two-dimensional single crystals of molecular materials. J. Am. Chem. Soc. 2018, 140, 5339-5342.
[22]
Xu, C. H.; He, P.; Liu, J.; Cui, A. J.; Dong, H. L.; Zhen, Y. G.; Chen, W.; Hu, W. P. A general method for growing two-dimensional crystals of organic semiconductors by “Solution Epitaxy”. Angew. Chem., Int. Ed. 2016, 55, 9519-9523.
[23]
Wang, Q. J.; Qian, J.; Li, Y.; Zheng, Y. H.; He, D. W.; Jiang, S.; Wang, Y.; Wang, X. R.; Pan, L. J.; Wang, J. Z. et al. 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly. Adv. Funct. Mater. 2016, 26, 3191-3198.
[24]
Zhang, Y. J.; Guo, Y.; Song, L.; Qian, J.; Jiang, S.; Wang, Q. J.; Wang, X. R.; Shi, Y.; Wang, X. M.; Li, Y. Directly writing 2D organic semiconducting crystals for high-performance field-effect transistors. J. Mater. Chem. C 2017, 5, 11246-11251.
[25]
Lee, J. H.; Choi, H. H.; Park, Y. D.; Anthony, J. E.; Lim, J. A.; Cho, J.; Chung, D. S.; Hwang, J.; Jang, H. W.; Cho, K. et al. 1D versus 2D growth of soluble acene crystals from soluble acene/polymer blends governed by a residual solvent reservoir in a phase-separated polymer matrix. Adv. Funct. Mater. 2018, 28, 1802875.
[26]
Haase, K.; Teixeira da Rocha, C.; Hauenstein, C.; Zheng, Y. C.; Hambsch, M.; Mannsfeld, S. C. B. High-mobility, solution-processed organic field-effect transistors from C8-BTBT: Polystyrene blends. Adv. Electron. Mater. 2018, 4, 1800076.
[27]
Teixeira da Rocha, C.; Haase, K.; Zheng, Y. C.; Löffler, M.; Hambsch, M.; Mannsfeld, S. C. B. Solution coating of small molecule/polymer blends enabling ultralow voltage and high-mobility organic transistors. Adv. Electron. Mater. 2018, 4, 1800141.
[28]
Jo, P. S.; Duong, D. T.; Park, J.; Sinclair, R.; Salleo, A. Control of rubrene polymorphs via polymer binders: Applications in organic field-effect transistors. Chem. Mater. 2015, 27, 3979-3987.
[29]
Naden, A. B.; Loos, J.; MacLaren, D. A. Structure-function relations in diF-TES-ADT blend organic field effect transistors studied by scanning probe microscopy. J. Mater. Chem. C 2014, 2, 245-255.
[30]
Peng, B. Y.; Wang, Z. R.; Chan, P. K. L. A simulation-assisted solution-processing method for a large-area, high-performance C10-DNTT organic semiconductor crystal. J. Mater. Chem. C 2016, 4, 8628-8633.
[31]
Diao, Y.; Zhou, Y.; Kurosawa, T.; Shaw, L.; Wang, C.; Park, S.; Guo, Y. K.; Reinspach, J. A.; Gu, K.; Gu, X. D. et al. Flow-enhanced solution printing of all-polymer solar cells. Nat. Commun. 2015, 6, 7955.
[32]
Vladimirov, I.; Kellermeier, M.; Geßner, T.; Molla, Z.; Grigorian, S.; Pietsch, U.; Schaffroth, L. S.; Kühn, M.; May, F.; Weitz, R. T. High-mobility, ultrathin organic semiconducting films realized by surface-mediated crystallization. Nano Lett. 2018, 18, 9-14.
[33]
Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H.; Yui, T. Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J. Am. Chem. Soc. 2007, 129, 15732-15733.
[34]
Izawa, T.; Miyazaki, E.; Takimiya, K. Molecular ordering of high-performance soluble molecular semiconductors and re-evaluation of their field-effect transistor characteristics. Adv. Mater. 2008, 20, 3388-3392.
[35]
Pei, K.; Chen, M.; Zhou, Z. W.; Li, H. Y.; Chan, P. K. L. Overestimation of carrier mobility in organic thin film transistors due to unaccounted fringe currents. ACS Appl. Electron. Mater. 2019, 1, 379-388.
[36]
Liu, C.; Minari, T.; Li, Y.; Kumatani, A.; Lee, M. V.; Athena Pan, S. H.; Takimiya, K.; Tsukagoshi, K. Direct formation of organic semiconducting single crystals by solvent vapor annealing on a polymer base film. J. Mater. Chem. 2012, 22, 8462-8469.
[37]
Yoon, J. Y.; Jeong, S.; Lee, S. S.; Kim, Y. H.; Ka, J. W.; Yi, M. H.; Jang, K. S. Enhanced performance of solution-processed organic thin-film transistors with a low-temperature-annealed alumina interlayer between the polyimide gate insulator and the semiconductor. ACS Appl. Mater. Interfaces 2013, 5, 5149-5155.
[38]
Kim, A.; Jang, K. S.; Kim, J.; Won, J. C.; Yi, M. H.; Kim, H.; Yoon, D. K.; Shin, T. J.; Lee, M. H.; Ka, J. W. et al. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors. Adv. Mater. 2013, 25, 6219-6625.
[39]
Jang, K. S.; Kim, W. S.; Won, J. M.; Kim, Y. H.; Myung, S.; Ka, J. W.; Kim, J.; Ahn, T.; Yi, M. H. Surface modification of polyimide gate insulators for solution-processed 2,7-didecyl[1]benzothieno[3, 2-b][1]benzothiophene (C10-BTBT) thin-film transistors. Phys. Chem. Chem. Phys. 2013, 15, 950-956.
[40]
Zhang, Z. C.; Peng, B. Y.; Ji, X. D.; Pei, K.; Chan, P. K. L. Marangoni-effect-assisted bar-coating method for high-quality organic crystals with compressive and tensile strains. Adv. Funct. Mater. 2017, 27, 1703443.
File
12274_2020_2882_MOESM1_ESM.pdf (4.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 March 2020
Revised: 04 March 2020
Accepted: 17 May 2020
Published: 02 July 2020
Issue date: September 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51973147, 61904117, 51821002 and 51672180), the Natural Science Foundation of Jiangsu Province of China (No. BK20180845), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices. The authors thank the Collaborative Innovation Center of Suzhou Nano Science and Technology (Nano-CIC), Soochow University and Beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing beam time.

Return