Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Owing to enhanced charge transport efficiency arising from the ultrathin nature, two-dimensional (2D) organic semiconductor single crystals (OSSCs) are emerging as a fascinating platform for high-performance organic field-effect transistors (OFETs). However, "coffee-ring" effect induced by an evaporation-induced convective flow near the contact line hinders the large-area growth of 2D OSSCs through a solution process. Here, we develop a new strategy of suppressing the "coffee-ring" effect by using an organic semiconductor: polymer blend solution. With the high-viscosity polymer in the organic solution, the evaporation-induced flow is remarkably weakened, ensuring the uniform molecule spreading for the 2D growth of the OSSCs. As an example, wafer-scale growth of crystalline film consisting of few-layered 2,7-didecylbenzothienobenzothiophene (C10-BTBT) crystals was successfully accomplished via blade coating. OFETs based on the crystalline film exhibited a maximum hole mobility up to 12.6 cm2·V-1·s-1, along with an average hole mobility as high as 8.2 cm2·V-1·s-1. Our work provides a promising strategy for the large-area growth of 2D OSSCs toward high-performance organic electronics.