Journal Home > Volume 13 , Issue 9

To accomplish mass hydrogen production by electrochemical water-splitting, it is a necessary to develop robust, highly active, stable, and cost-effective hydrogen evolution reaction (HER) electrocatalysts that perform comparably to Pt in the universal pH range. In this work, cobalt phosphide hybrid nanosheets supported on carbon felt (CoP HNS/CF) are presented, which exhibit the superior electrocatalytic hydrogen production under a universal-pH. In these nanosheets, a single CoP HNS is composed of polycrystalline CoP and oxygen-enriched amorphous Co-O-P phase. Benefiting from its unique nanoarchitecture, as-fabricated CoP HNS/CF exhibits a tremendous electrocatalytic HER activity and outperforms Pt/C as well as state-of-the-art CoP electrocatalysts in universal-pH. In acidic and neutral media, the CoP HNS/CF shows superior electrocatalytic activity while maintaining its original hybrid crystalline-amorphous phase and morphology. In alkaline medium, the unexpected phase and morphological reorganization of CoP HNS/CF results in outstanding electrocatalytic operation. CoP HNS/CF not only achieves high electrocatalytic activity and kinetics, but also a stable and long operating lifetime even under a high current density of 500 mA·cm-2. Furthermore, the fabrication of CoP HNS/CF can be scaled up easily, and the large CoP HNS/CF electrode also exhibits similar electrocatalytic activity and stability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH

Show Author's information Hyunseok YoonHee Jo SongBobae JuDong-Wan Kim( )
School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea

Abstract

To accomplish mass hydrogen production by electrochemical water-splitting, it is a necessary to develop robust, highly active, stable, and cost-effective hydrogen evolution reaction (HER) electrocatalysts that perform comparably to Pt in the universal pH range. In this work, cobalt phosphide hybrid nanosheets supported on carbon felt (CoP HNS/CF) are presented, which exhibit the superior electrocatalytic hydrogen production under a universal-pH. In these nanosheets, a single CoP HNS is composed of polycrystalline CoP and oxygen-enriched amorphous Co-O-P phase. Benefiting from its unique nanoarchitecture, as-fabricated CoP HNS/CF exhibits a tremendous electrocatalytic HER activity and outperforms Pt/C as well as state-of-the-art CoP electrocatalysts in universal-pH. In acidic and neutral media, the CoP HNS/CF shows superior electrocatalytic activity while maintaining its original hybrid crystalline-amorphous phase and morphology. In alkaline medium, the unexpected phase and morphological reorganization of CoP HNS/CF results in outstanding electrocatalytic operation. CoP HNS/CF not only achieves high electrocatalytic activity and kinetics, but also a stable and long operating lifetime even under a high current density of 500 mA·cm-2. Furthermore, the fabrication of CoP HNS/CF can be scaled up easily, and the large CoP HNS/CF electrode also exhibits similar electrocatalytic activity and stability.

Keywords: electrocatalyst, cobalt phosphide, hydrogen evolution reaction, large-scale, self-supporting, universal-ph

References(38)

[1]
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587-7590.
[2]
Zhai, M. K.; Wang, F.; Du, H. B. Transition-metal phosphide-carbon nanosheet composites derived from two-dimensional metal-organic frameworks for highly efficient electrocatalytic water-splitting. ACS Appl. Mater. Interfaces 2017, 9, 40171-40179.
[3]
Wu, K. L.; Chen, Z.; Cheong, W. C.; Liu, S. J.; Zhu, W.; Cao, X.; Sun, K. A.; Lin, Y.; Zheng, L. R.; Yan, W. S. et al. Toward bifunctional overall water splitting electrocatalyst: General preparation of transition metal phosphide nanoparticles decorated N-doped porous carbon spheres. ACS Appl. Mater. Interfaces 2018, 10, 44201-44208.
[4]
Song, H. J.; Yoon, H.; Ju, B.; Lee, G. H.; Kim, D. W. 3D architectures of quaternary Co-Ni-S-P/graphene hybrids as highly active and stable bifunctional electrocatalysts for overall water splitting. Adv. Energy Mater. 2018, 8, 1802319.
[5]
Tabassum, H.; Guo, W. S.; Meng, W.; Mahmood, A.; Zhao, R.; Wang, Q. F.; Zou, R. Q. Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N Co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv. Energy Mater. 2017, 7, 1601671.
[6]
Wang, X. D.; Xu, Y. F.; Rao, H. S.; Xu, W. F.; Chen, H. Y.; Zhang, W. X.; Kuang, D. B.; Su, C. Y. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy Environ. Sci. 2016, 9, 1468-1475.
[7]
Guha, A.; Vineesh, T. V.; Sekar, A.; Narayanaru, S.; Sahoo, M.; Nayak, S.; Chakraborty, S.; Narayanan, T. N. Mechanistic insight into enhanced hydrogen evolution reaction activity of ultrathin hexagonal boron nitride-modified Pt electrodes. ACS Catal. 2018, 8, 6636-6644.
[8]
Huang, J. W.; Li, Y. R.; Xia, Y. F.; Zhu, J. T.; Yi, Q. H.; Wang, H.; Xiong, J.; Sun, Y. H.; Zou, G. F. Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values. Nano Res. 2017, 10, 1010-1020.
[9]
Yu, J.; Zhong, Y. J.; Wu, X. H.; Sunarso, J.; Ni, M.; Zhou, W.; Shao, Z. P. Bifunctionality from synergy: CoP nanoparticles embedded in amorphous CoOx nanoplates with heterostructures for highly efficient water electrolysis. Adv. Sci. 2018, 5, 1800514.
[10]
Xu, K.; Cheng, H.; Lv, H. F.; Wang, J. Y.; Liu, L. Q.; Liu, S.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Adv. Mater. 2018, 30, 1703322.
[11]
Cao, H. S.; Xie, Y.; Wang, H. L.; Xiao, F.; Wu, A. P.; Li, L.; Xu, Z. K.; Xiong, N.; Pan, K. Flower-like CoP microballs assembled with (002) facet nanowires via precursor route: Efficient electrocatalysts for hydrogen and oxygen evolution. Electrochim. Acta 2018, 259, 830-840.
[12]
Pu, Z. H.; Liu, Q.; Asiri, A. M.; Sun, X. P. Tungsten phosphide nanorod arrays directly grown on carbon cloth: A highly efficient and stable hydrogen evolution cathode at all pH values. ACS Appl. Mater. Interfaces 2014, 6, 21874-21879.
[13]
Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022-3029.
[14]
Laursen, A. B.; Patraju, K. R.; Whitaker, M. J.; Retuerto, M.; Sarkar, T.; Yao, N.; Ramanujachary, K. V.; Greenblatt, M.; Dismukes, G. C. Nanocrystalline Ni5P4: A hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ. Sci. 2015, 8, 1027-1034.
[15]
Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529-1541.
[16]
Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.
[17]
Yu, X. W.; Zhang, M.; Tong, Y.; Li, C.; Shi, G. Q. A large-scale graphene-bimetal film electrode with an ultrahigh mass catalytic activity for durable water splitting. Adv. Energy Mater. 2018, 8, 1800403.
[18]
Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 14433-14437.
[19]
Zhuo, J. Q.; Cabán-Acevedo, M.; Liang, H. F.; Samad, L.; Ding, Q.; Fu, Y. P.; Li, M. X.; Jin, S. High-performance electrocatalysis for hydrogen evolution reaction using Se-doped pyrite-phase nickel diphosphide nanostructures. ACS Catal. 2015, 5, 6355-6361.
[20]
Jin, Z. Y.; Li, P. P.; Huang, X.; Zeng, G. F.; Jin, Y.; Zheng, B. Z.; Xiao, D. Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2014, 2, 18593-18599.
[21]
Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441-446.
[22]
Zhao, G. Q.; Lin, Y.; Rui, K.; Zhou, Q.; Chen, Y. P.; Dou, S. X.; Sun, W. P. Epitaxial growth of Ni(OH)2 nanoclusters on MoS2 nanosheets for enhanced alkaline hydrogen evolution reaction. Nanoscale 2018, 10, 19074-19081.
[23]
Hao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291.
[24]
Xu, W. W.; Lu, Z. Y.; Wan, P. B.; Kuang, Y.; Sun, X. M. High-performance water electrolysis system with double nanostructured superaerophobic electrodes. Small 2016, 12, 2492-2498.
[25]
Ren, B. W.; Li, D. Q.; Jin, Q. Y.; Cui, H.; Wang, C. X. In-situ tailoring cobalt nickel molybdenum oxide components for overall water-splitting at high current densities. ChemElectroChem 2019, 6, 413-420.
[26]
Che, Q. J.; Li, Q.; Tan, Y.; Chen, X. H.; Xu, X.; Chen, Y. S. One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Appl. Catal. B: Environ. 2019, 246, 337-348.
[27]
Xu, R.; Wu, R.; Shi, Y. M.; Zhang, J. F.; Zhang, B. Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy 2016, 24, 103-110.
[28]
Masikhwa, T. M.; Dangbegnon, J. K.; Bello, A.; Madito, M. J.; Momodu, D.; Barzegar, F.; Manyala, N. Effect of growth time of hydrothermally grown cobalt hydroxide carbonate on its supercapacitive performance. J. Phys. Chem. Solids 2016, 94, 17-24.
[29]
Wang, J. K.; Gao, R.; Zheng, L. R.; Chen, Z. J.; Wu, Z. H.; Sun, L. M.; Hu, Z. B.; Liu, X. F. CoO/CoP heterostructured nanosheets with an O-P interpenetrated interface as a bifunctional electrocatalyst for Na-O2 battery. ACS Catal. 2018, 8, 8953-8960.
[30]
Li, B. X.; Xie, Y.; Wu, C. Z.; Li, Z. Q.; Zhang, J. Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures. Mater. Chem. Phys. 2006, 99, 479-486.
[31]
Wang, S. L.; Qian, L. Q.; Xu, H.; Lü, G. L.; Dong, W. J.; Tang, W. H. Synthesis and structural characterization of cobalt hydroxide carbonate nanorods and nanosheets. J. Alloy Compd. 2009, 476, 739-743.
[32]
Anderson, B. D.; Tracy, J. B. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale 2014, 6, 12195-12216.
[33]
Wang, T. T.; Wu, L. Q.; Xu, X. B.; Sun, Y.; Wang, Y. Q.; Zhong, W.; Du, Y. W. An efficient Co3S4/CoP hybrid catalyst for electrocatalytic hydrogen evolution. Sci. Rep. 2017, 7, 11891.
[34]
Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.
[35]
Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M. et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 2017, 7, 1700020.
[36]
Xie, X. H.; Song, M.; Wang, L. G.; Engelhard, M. H.; Luo, L. L.; Miller, A.; Zhang, Y. Y.; Du, L.; Pan, H. L.; Nie, Z. M. et al. Electrocatalytic hydrogen evolution in neutral pH solutions: Dual-phase synergy. ACS Catal. 2019, 9, 8712-8718.
[37]
Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550-557.
[38]
Zhou, H. Q.; Yu, F.; Zhu, Q.; Sun, J. Y.; Qin, F.; Yu, L.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Water splitting by electrolysis at high current densities under 1.6 volts. Energy Environ. Sci. 2018, 11, 2858-2864.
File
12274_2020_2881_MOESM2_ESM.pdf (5.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 April 2020
Revised: 12 May 2020
Accepted: 14 May 2020
Published: 25 June 2020
Issue date: September 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work is supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT, South Korea (No. 2016M3A7B4909318). We thank the Korea Basic Science Institute (KBSI) for the technical support. Microstructural images were obtained using a Hitachi SU-70 scanning electron microscope at the KBSI.

Return