Journal Home > Volume 13 , Issue 9

Axially heterostructured nanowires are a promising platform for next generation electronic and optoelectronic devices. Reports based on theoretical modeling have predicted more complex strain distributions and increased critical layer thicknesses than in thin films, due to lateral strain relaxation at the surface, but the understanding of the growth and strain distributions in these complex structures is hampered by the lack of high-resolution characterization techniques. Here, we demonstrate strain mapping of an axially segmented GaInP-InP 190 nm diameter nanowire heterostructure using scanning X-ray diffraction. We systematically investigate the strain distribution and lattice tilt in three different segment lengths from 45 to 170 nm, obtaining strain maps with about 10-4 relative strain sensitivity. The experiments were performed using the 90 nm diameter nanofocus at the NanoMAX beamline, taking advantage of the high coherent flux from the first diffraction limited storage ring MAX IV. The experimental results are in good agreement with a full simulation of the experiment based on a three-dimensional (3D) finite element model. The largest segments show a complex profile, where the lateral strain relaxation at the surface leads to a dome-shaped strain distribution from the mismatched interfaces, and a change from tensile to compressive strain within a single segment. The lattice tilt maps show a cross-shaped profile with excellent qualitative and quantitative agreement with the simulations. In contrast, the shortest measured InP segment is almost fully adapted to the surrounding GaInP segments.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High resolution strain mapping of a single axially heterostructured nanowire using scanning X-ray diffraction

Show Author's information Susanna Hammarberg1( )Vilgailė Dagytė2Lert Chayanun1Megan O. Hill3Alexander Wyke1Alexander Björling4Ulf Johansson4Sebastian Kalbfleisch4Magnus Heurlin2Lincoln J. Lauhon3Magnus T. Borgström2Jesper Wallentin1
Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund 221 00, Sweden
Solid State Physics and NanoLund, Lund University, Box 118, Lund 221 00, Sweden
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
MAX IV Laboratory, Lund University, Box 118, Lund 221 00, Sweden

Abstract

Axially heterostructured nanowires are a promising platform for next generation electronic and optoelectronic devices. Reports based on theoretical modeling have predicted more complex strain distributions and increased critical layer thicknesses than in thin films, due to lateral strain relaxation at the surface, but the understanding of the growth and strain distributions in these complex structures is hampered by the lack of high-resolution characterization techniques. Here, we demonstrate strain mapping of an axially segmented GaInP-InP 190 nm diameter nanowire heterostructure using scanning X-ray diffraction. We systematically investigate the strain distribution and lattice tilt in three different segment lengths from 45 to 170 nm, obtaining strain maps with about 10-4 relative strain sensitivity. The experiments were performed using the 90 nm diameter nanofocus at the NanoMAX beamline, taking advantage of the high coherent flux from the first diffraction limited storage ring MAX IV. The experimental results are in good agreement with a full simulation of the experiment based on a three-dimensional (3D) finite element model. The largest segments show a complex profile, where the lateral strain relaxation at the surface leads to a dome-shaped strain distribution from the mismatched interfaces, and a change from tensile to compressive strain within a single segment. The lattice tilt maps show a cross-shaped profile with excellent qualitative and quantitative agreement with the simulations. In contrast, the shortest measured InP segment is almost fully adapted to the surrounding GaInP segments.

Keywords:

strain mapping, nanowire, heterostructure, X-ray diffraction (XRD), MAX IV, finite element modeling
Received: 27 March 2020 Revised: 12 May 2020 Accepted: 13 May 2020 Published: 21 June 2020 Issue date: September 2020
References(58)
[1]
Memisevic, E.; Hellenbrand, M.; Lind, E.; Persson, A. R.; Sant, S.; Schenk, A.; Svensson, J.; Wallenberg, R.; Wernersson, L. E. Individual defects in InAs/InGaAsSb/GaSb nanowire tunnel field-effect transistors operating below 60 mV/decade. Nano Lett. 2017, 17, 4373-4380.
[2]
Tomioka, K.; Yoshimura, M.; Fukui, T. A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 2012, 488, 189-192.
[3]
Jia, C. C.; Lin, Z. Y.; Huang, Y.; Duan, X. F. Nanowire electronics: From nanoscale to macroscale. Chem. Rev. 2019, 119, 9074-9135.
[4]
Haverkort, J. E. M.; Garnett, E. C.; Bakkers, E. P. A. M. Fundamentals of the nanowire solar cell: Optimization of the open circuit voltage. Appl. Phys. Rev. 2018, 5, 031106.
[5]
Otnes, G.; Borgström, M. T. Towards high efficiency nanowire solar cells. Nano Today 2017, 12, 31-45.
[6]
Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057-1060.
[7]
Soci, C.; Zhang, A.; Bao, X. Y.; Kim, H.; Lo, Y.; Wang, D. L. Nanowire photodetectors. J. Nanosci. Nanotechnol. 2010, 10, 1430-1449.
[8]
Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617-620.
[9]
Gibson, S. J.; van Kasteren, B.; Tekcan, B.; Cui, Y. C.; van Dam, D.; Haverkort, J. E.; Bakkers, E. P. A. M.; Reimer, M. E. Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection. Nat. Nanotechnol. 2019, 14, 473-479.
[10]
Barrigón, E.; Heurlin, M.; Bi, Z. X.; Monemar, B.; Samuelson, L. Synthesis and applications of III-V nanowires. Chem. Rev. 2019, 119, 9170-9220.
[11]
Motohisa, J.; Kameda, H.; Sasaki, M.; Tomioka, K. Characterization of nanowire light-emitting diodes grown by selective-area metal-organic vapor-phase epitaxy. Nanotechnology 2019, 30, 134002.
[12]
Corfdir, P.; Marquardt, O.; Lewis, R. B.; Sinito, C.; Ramsteiner, M.; Trampert, A.; Jahn, U.; Geelhaar, L.; Brandt, O.; Fomin, V. M. Excitonic Aharonov-Bohm oscillations in core-shell nanowires. Adv. Mater. 2019, 31, 1805645.
[13]
Mourik, V.; Zuo, K.; Frolov, S. M.; Plissard, S.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 2012, 336, 1003-1007.
[14]
Zhang, H.; Liu, D. E.; Wimmer, M.; Kouwenhoven, L. P. Next steps of quantum transport in Majorana nanowire devices. Nat. Commun. 2019, 10, 5128.
[15]
Świderski, M.; Zieliński, M. Electric field tuning of excitonic fine-structure splitting in asymmetric InAs/InP nanowire quantum dot molecules. Phys. Rev. B 2019, 100, 235417.
[16]
Haffouz, S.; Zeuner, K. D.; Dalacu, D.; Poole, P. J.; Lapointe, J.; Poitras, D.; Mnaymneh, K.; Wu, X. H.; Couillard, M.; Korkusinski, M. et al. Bright single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: The role of the photonic waveguide. Nano Lett. 2018, 18, 3047-3052.
[17]
Björk, M. T.; Ohlsson, B. J.; Sass, T.; Persson, A. I.; Thelander, C.; Magnusson, M. H.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 2002, 80, 1058-1060.
[18]
Lauhon, L. J.; Gudiksen, M. S.; Wang, D. L.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57-61.
[19]
Josefsson, M.; Svilans, A.; Burke, A. M.; Hoffmann, E. A.; Fahlvik, S.; Thelander, C.; Leijnse, M.; Linke, H. A quantum-dot heat engine operating close to the thermodynamic efficiency limits. Nat. Nanotechnol. 2018, 13, 920-924.
[20]
LaPierre, R. R.; Chia, A. C. E.; Gibson, S. J.; Haapamaki, C. M.; Boulanger, J.; Yee, R.; Kuyanov, P.; Zhang, J.; Tajik, N.; Jewell, N. et al. III-V nanowire photovoltaics: Review of design for high efficiency. Phys. Status Solidi 2013, 7, 815-830.
[21]
Yao, M. Q.; Cong, S.; Arab, S.; Huang, N. F.; Povinelli, M. L.; Cronin, S. B.; Dapkus, P. D.; Zhou, C. W. Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition. Nano Lett. 2015, 15, 7217-7224.
[22]
Zeng, X. L.; Otnes, G.; Heurlin, M.; Mourão, R. T.; Borgström, M. T. InP/GaInP nanowire tunnel diodes. Nano Res. 2018, 11, 2523-2531.
[23]
Saxena, D.; Mokkapati, S.; Parkinson, P.; Jiang, N.; Gao, Q.; Tan, H. H.; Jagadish, C. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photonics 2013, 7, 963-968.
[24]
Ertekin, E.; Greaney, P. A.; Chrzan, D. C.; Sands, T. D. Equilibrium limits of coherency in strained nanowire heterostructures. J. Appl. Phys. 2005, 97, 114325.
[25]
Ye, H.; Lu, P. F.; Yu, Z. Y.; Song, Y. X.; Wang, D. L.; Wang, S. M. Critical thickness and radius for axial heterostructure nanowires using finite-element method. Nano Lett. 2009, 9, 1921-1925.
[26]
Glas, F. Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 2006, 74, 121302.
[27]
Glas, F. Strain in nanowires and nanowire heterostructures. Semicond. Semimet. 2015, 93, 79-123.
[28]
Wallentin, J.; Jacobsson, D.; Osterhoff, M.; Borgstrom, M. T.; Salditt, T. Bending and twisting lattice tilt in strained core-shell nanowires revealed by nanofocused X-ray diffraction. Nano Lett. 2017, 17, 4143-4150.
[29]
Sköld, N.; Wagner, J. B.; Karlsson, G.; Hernán, T.; Seifert, W.; Pistol, M. E.; Samuelson, L. Phase segregation in AlInP shells on GaAs nanowires. Nano Lett. 2006, 6, 2743-2747.
[30]
Wen, C. Y.; Reuter, M. C.; Su, D.; Stach, E. A.; Ross, F. M. Strain and stability of ultrathin Ge layers in Si/Ge/Si axial heterojunction nanowires. Nano Lett. 2015, 15, 1654-1659.
[31]
Larsson, M. W.; Wagner, J. B.; Wallin, M.; Håkansson, P.; Fröberg, L. E.; Samuelson, L.; Reine Wallenberg, L. Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires. Nanotechnology 2007, 18, 015504.
[32]
Schropp, A.; Hoppe, R.; Patommel, J.; Samberg, D.; Seiboth, F.; Stephan, S.; Wellenreuther, G.; Falkenberg, G.; Schroer, C. G. Hard X-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional X-ray microscopes. Appl. Phys. Lett. 2012, 100, 253112.
[33]
Döring, F.; Robisch, A. L.; Eberl, C.; Osterhoff, M.; Ruhlandt, A.; Liese, T.; Schlenkrich, F.; Hoffmann, S.; Bartels, M.; Salditt, T. et al. Sub-5 nm hard X-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate. Opt. Express 2013, 21, 19311-19323.
[34]
Schülli, T. U.; Leake, S. J. X-ray nanobeam diffraction imaging of materials. Curr. Opin. Solid State Mater. Sci. 2018, 22, 188-201.
[35]
Stankevič, T.; Hilner, E.; Seiboth, F.; Ciechonski, R.; Vescovi, G.; Kryliouk, O.; Johansson, U.; Samuelson, L.; Wellenreuther, G.; Falkenberg, G. et al. Fast strain mapping of nanowire light-emitting diodes using nanofocused X-ray beams. ACS Nano 2015, 9, 6978-6984.
[36]
Biermanns, A.; Breuer, S.; Davydok, A.; Geelhaar, L.; Pietsch, U. Structural polytypism and residual strain in GaAs nanowires grown on Si(111) probed by single-nanowire X-ray diffraction. J. Appl. Cryst. 2012, 45, 239-244.
[37]
Keplinger, M.; Mandl, B.; Kriegner, D.; Holý, V.; Samuelsson, L.; Bauer, G.; Deppert, K.; Stangl, J. X-ray diffraction strain analysis of a single axial InAs1-xPx nanowire segment. J. Synchrotron Radiat. 2015, 22, 59-66.
[38]
Jacques, V. L. R.; Carbone, D.; Ghisleni, R.; Thilly, L. Counting dislocations in microcrystals by coherent X-ray diffraction. Phys. Rev. Lett. 2013, 111, 065503.
[39]
Hrauda, N.; Zhang, J. J.; Wintersberger, E.; Etzelstorfer, T.; Mandl, B.; Stangl, J.; Carbone, D.; Holý, V.; Jovanović, V.; Biasotto, C. et al. X-ray nanodiffraction on a single sige quantum dot inside a functioning field-effect transistor. Nano Lett. 2011, 11, 2875-2880.
[40]
Lazarev, S.; Dzhigaev, D.; Bi, Z. X.; Nowzari, A.; Kim, Y. Y.; Rose, M.; Zaluzhnyy, I. A.; Gorobtsov, O. Y.; Zozulya, A. V.; Lenrick, F. et al. Structural changes in a single GaN nanowire under applied voltage bias. Nano Lett. 2018, 18, 5446-5452.
[41]
Wallentin, J.; Osterhoff, M.; Salditt, T. In operando X-ray nanodiffraction reveals electrically induced bending and lattice contraction in a single nanowire device. Adv. Mater. 2016, 28, 1788-1792.
[42]
Eriksson, M.; van der Veen, J. F.; Quitmann, C. Diffraction-limited storage rings—A window to the science of tomorrow. J. Synchrotron Radiat. 2014, 21, 837-842.
[43]
Vogt, U.; Parfeniukas, K.; Stankevič, T.; Kalbfleisch, S.; Liebi, M.; Matej, Z.; Björling, A.; Carbone, G.; Mikkelsen, A.; Johansson, U. First X-ray nanoimaging experiments at nanomax. In Proceedings of X-Ray Nanoimaging: Instruments and Methods III 2017, San Diego, USA, 2017; p 7.
[44]
Otnes, G.; Heurlin, M.; Graczyk, M.; Wallentin, J.; Jacobsson, D.; Berg, A.; Maximov, I.; Borgström, M. T. Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography. Nano Res. 2016, 9, 2852-2861.
[45]
Björling, A.; Kalbfleisch, S.; Kahnt, M.; Sala, S.; Parfeniukas, K.; Vogt, U.; Carbone, D.; Johansson, U. Ptychographic characterization of a coherent nanofocused X-ray beam. Opt. Express 2020, 28, 5069-5076.
[46]
Chahine, G. A.; Richard, M. I.; Homs-Regojo, R. A.; Tran-Caliste, T. N.; Carbone, D.; Jaques, V. L. R.; Grifone, R.; Boesecke, P.; Katzer, J.; Costina, I. et al. Imaging of strain and lattice orientation by quick scanning X-ray microscopy combined with three-dimensional reciprocal space mapping. J. Appl. Cryst. 2014, 47, 762-769.
[47]
Troian, A.; Otnes, G.; Zeng, X. L.; Chayanun, L.; Dagytė, V.; Hammarberg, S.; Salomon, D.; Timm, R.; Mikkelsen, A.; Borgström, M. T. et al. Nanobeam X-ray fluorescence dopant mapping reveals dynamics of in situ Zn-doping in nanowires. Nano Lett. 2018, 18, 6461-6468.
[48]
Otnes, G.; Heurlin, M.; Zeng, X. L.; Borgström, M. T. InxGa1-xP nanowire growth dynamics strongly affected by doping using diethylzinc. Nano Lett. 2017, 17, 702-707.
[49]
Etzelstorfer, T.; Süess, M. J.; Schiefler, G. L.; Jacques, V. L. R.; Carbone, D.; Chrastina, D.; Isella, G.; Spolenak, R.; Stangl, J.; Sigg, H. et al. Scanning X-ray strain microscopy of inhomogeneously strained Ge micro-bridges. J. Synchrotron Radiat. 2014, 21, 111-118.
[50]
Borgström, M. T.; Wallentin, J.; Trägårdh, J.; Ramvall, P.; Ek, M.; Wallenberg, L. R.; Samuelson, L.; Deppert, K. In situ etching for total control over axial and radial nanowire growth. Nano Res. 2010, 3, 264-270.
[51]
Godard, P.; Carbone, G.; Allain, M.; Mastropietro, F.; Chen, G.; Capello, L.; Diaz, A.; Metzger, T. H.; Stangl, J.; Chamard, V. Three-dimensional high-resolution quantitative microscopy of extended crystals. Nat. Commun. 2011, 2, 568.
[52]
Robinson, I.; Harder, R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 2009, 8, 291-298.
[53]
Bunk, O.; Bech, M.; Jensen, T. H.; Feidenhans’l, R.; Binderup, T.; Menzel, A.; Pfeiffer, F. Multimodal X-ray scatter imaging. New J. Phys. 2009, 11, 123016.
[54]
Bajt, S.; Prasciolu, M.; Fleckenstein, H.; Domaracký, M.; Chapman, H. N.; Morgan, A. J.; Yefanov, O.; Messerschmidt, M.; Du, Y.; Murray, K. T. et al. X-ray focusing with efficient high-NA multilayer laue lenses. Light Sci. Appl. 2018, 7, 17162.
[55]
Hill, M. O.; Calvo-Almazan, I.; Allain, M.; Holt, M. V.; Ulvestad, A.; Treu, J.; Koblmuller, G.; Huang, C. Y.; Huang, X. J.; Yan, H. F. et al. Measuring three-dimensional strain and structural defects in a single InGaAs nanowire using coherent X-ray multiangle Bragg projection ptychography. Nano Lett. 2018, 18, 811-819.
[56]
Pfeifer, M. A.; Williams, G. J.; Vartanyants, I. A.; Harder, R.; Robinson, I. K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 2006, 442, 63-66.
[57]
Björling, A.; Carbone, D.; Sarabia, F. J.; Hammarberg, S.; Feliu, J. M.; Solla-Gullón, J. Coherent Bragg imaging of 60 nm Au nanoparticles under electrochemical control at the nanomax beamline. J. Synchrotron Radiat. 2019, 26, 1830-1834.
[58]
Jacobsson, D.; Persson, J. M.; Kriegner, D.; Etzelstorfer, T.; Wallentin, J.; Wagner, J. B.; Stangl, J.; Samuelson, L.; Deppert, K.; Borgström, M. T. Particle-assisted GaxIn1-xP nanowire growth for designed bandgap structures. Nanotechnology 2012, 23, 245601.
File
12274_2020_2878_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 March 2020
Revised: 12 May 2020
Accepted: 13 May 2020
Published: 21 June 2020
Issue date: September 2020

Copyright

© The author(s) 2020

Acknowledgements

We acknowledge the excellent support from the staff at the MAX IV Laboratory, in particular Gerardina Carbone for the preparations at the NanoMAX beamline. The MAX IV Laboratory receives funding through the Swedish Research Council under grant no 2013-02235. This research was funded by the Röntgen-Ångström Cluster, NanoLund, Marie Sklodowska Curie Actions, Cofund, Project INCA 600398, and the Swedish Research Council grant number 2015-00331. L. J. L. and M. O. H. acknowledge support of NSF DMR 1611341 and 1905768. M. O. H. acknowledges support of the NSF GRFP and the NSF GROW program.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return