Journal Home > Volume 13 , Issue 9

It is of great importance to develop new micro-actuators with high performance by optimizing the structures and materials. Here we develop a VO2/Al2O3/CNT eccentric coaxial nanofiber, which can be potentially applied as a micro-actuator. The specific eccentric coaxial structure was efficiently fabricated by conventional thin film deposition methodology with individual CNT templet. Activated by thermal and photothermal stimuli, the as-developed actuator delivers a bidirectional actuation behavior with large amplitudes and an ultra-fast response, ~ 2.5 mS. A tweezer can be further made by assembling two such nanofibers symmetrically onto a tungsten probe. Clamping and unclamping can be realized by laser stimulus. More experimental and simulation investigations indicated that the actuation behaviors could be attributed to the nanostructured eccentric coaxial geometry, the thermal coefficient mismatch between layers and the fast phase transition of VO2. The micro-actuators will have potentials in micro manipulators, nanoscaled switches, remote controls and other autonomous systems. Furthermore, a large variety of coaxial and eccentric coaxial nanofibers with various functions can also be developed, giving the as-developed methodology more opportunities.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bidirectional micro-actuators based on eccentric coaxial composite oxide nanofiber

Show Author's information Guang Wang1He Ma2Xiang Jin1Hua Yuan1Yang Wei1( )Qunqing Li1Kaili Jiang1,3Shoushan Fan1,3
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
College of Applied Science, Beijing University of Technology, Beijing 100124, China
Collaborative Innovation Center of Quantum Matter, Beijing 100084, China

Abstract

It is of great importance to develop new micro-actuators with high performance by optimizing the structures and materials. Here we develop a VO2/Al2O3/CNT eccentric coaxial nanofiber, which can be potentially applied as a micro-actuator. The specific eccentric coaxial structure was efficiently fabricated by conventional thin film deposition methodology with individual CNT templet. Activated by thermal and photothermal stimuli, the as-developed actuator delivers a bidirectional actuation behavior with large amplitudes and an ultra-fast response, ~ 2.5 mS. A tweezer can be further made by assembling two such nanofibers symmetrically onto a tungsten probe. Clamping and unclamping can be realized by laser stimulus. More experimental and simulation investigations indicated that the actuation behaviors could be attributed to the nanostructured eccentric coaxial geometry, the thermal coefficient mismatch between layers and the fast phase transition of VO2. The micro-actuators will have potentials in micro manipulators, nanoscaled switches, remote controls and other autonomous systems. Furthermore, a large variety of coaxial and eccentric coaxial nanofibers with various functions can also be developed, giving the as-developed methodology more opportunities.

Keywords: actuator, nanofiber, phase transition, carbon nanotube, vanadium dioxide

References(42)

[1]
Yu, Q.; Yang, X. J.; Chen, Y.; Yu, K. Q.; Gao, J.; Liu, Z. F.; Cheng, P.; Zhang, Z. J.; Aguila, B.; Ma, S. Q. Fabrication of light-triggered soft artificial muscles via a mixed-matrix membrane strategy. Angew. Chem., Int. Ed. 2018, 57, 10192-10196.
[2]
Takashima, Y.; Hatanaka, S.; Otsubo, M.; Nakahata, M.; Kakuta, T.; Hashidzume, A.; Yamaguchi, H.; Harada, A. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat. Commun. 2012, 3, 1270.
[3]
Leong, T. G.; Randall, C. L.; Benson, B. R.; Bassik, N.; Stern, G. M.; Gracias, D. H. Tetherless thermobiochemically actuated microgrippers. Proc. Natl. Acad. Sci. USA 2009, 106, 703-708.
[4]
Chen, J. W.; Leung, F. K. C.; Stuart, M. C. A.; Kajitani, T.; Fukushima, T.; van der Giessen, E.; Feringa, B. L. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 2018, 10, 132-138.
[5]
Foroughi, J.; Spinks, G. M.; Wallace, G. G.; Oh, J.; Kozlov, M. E.; Fang, S. L.; Mirfakhrai, T.; Madden, J. D. W.; Shin, M. K.; Kim, S. J. et al. Torsional carbon nanotube artificial muscles. Science 2011, 334, 494-497.
[6]
Chen, L. Z.; Liu, C. H.; Liu, K.; Meng, C. Z.; Hu, C. H.; Wang, J. P.; Fan, S. S. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. ACS Nano 2011, 5, 1588-1593.
[7]
Chen, L. Z.; Weng, M. C.; Zhou, Z. W.; Zhou, Y.; Zhang, L. L.; Li, J. X.; Huang, Z. G.; Zhang, W.; Liu, C. H.; Fan, S. S. Large-deformation curling actuators based on carbon nanotube composite: Advanced-structure design and biomimetic application. ACS Nano 2015, 9, 12189-12196.
[8]
Zhang, X. B.; Yu, Z. B.; Wang, C.; Zarrouk, D.; Seo, J. W.; Cheng, J. C.; Buchan, A. D.; Takei, K.; Zhao, Y.; Ager, J. W. et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014, 5, 2983.
[9]
Landi, B. J.; Raffaelle, R. P.; Heben, M. J.; Alleman, J. L.; VanDerveer, W.; Gennett, T. Single wall carbon nanotube-nafion composite actuators. Nano Lett. 2002, 2, 1329-1332.
[10]
Ge, F. J.; Lu, X. L.; Xiang, J.; Tong, X.; Zhao, Y. An optical actuator based on gold-nanoparticle-containing temperature-memory semicrystalline polymers. Angew. Chem., Int. Ed. 2017, 56, 6126-6130.
[11]
Cheng, H. H.; Zhao, F.; Xue, J. L.; Shi, G. Q.; Jiang, L.; Qu, L. T. One single graphene oxide film for responsive actuation. ACS Nano 2016, 10, 9529-9535.
[12]
Ji, M. Y.; Jiang, N.; Chang, J.; Sun, J. Q. Near-infrared light-driven, highly efficient bilayer actuators based on polydopamine-modified reduced graphene oxide. Adv. Funct. Mater. 2014, 24, 5412-5419.
[13]
Mirvakili, S. M.; Hunter, I. W. Multidirectional artificial muscles from nylon. Adv. Mater. 2017, 29, 1604734.
[14]
Morin, F. J. Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett. 1959, 3, 34-36.
[15]
Cao, J. B.; Fan, W.; Zhou, Q.; Sheu, E.; Liu, A. W.; Barrett, C.; Wu, J. Colossal thermal-mechanical actuation via phase transition in single-crystal VO2 microcantilevers. J. Appl. Phys. 2010, 108, 083538.
[16]
Ma, H.; Hou, J. W.; Wang, X. W.; Zhang, J.; Yuan, Z. Q.; Xiao, L.; Wei, Y.; Fan, S. S.; Jiang, K. L.; Liu, K. Flexible, all-inorganic actuators based on vanadium dioxide and carbon nanotube bimorphs. Nano Lett. 2017, 17, 421-428.
[17]
Liu, K.; Cheng, C.; Suh, J.; Tang-Kong, R.; Fu, D. Y.; Lee, S.; Zhou, J.; Chua, L. O.; Wu, J. Q. Powerful, multifunctional torsional micromuscles activated by phase transition. Adv. Mater. 2014, 26, 1746-1750.
[18]
Wang, T. Y.; Torres, D.; Fernandez, F. E.; Wang, C.; Sepulveda, N. Maximizing the performance of photothermal actuators by combining smart materials with supplementary advantages. Sci. Adv. 2017, 3, e1602697.
[19]
Liu, K.; Cheng, C.; Cheng, Z. T.; Wang, K.; Ramesh, R.; Wu, J. Q. Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs. Nano Lett. 2012, 12, 6302-6308.
[20]
Cao, J.; Ertekin, E.; Srinivasan, V.; Fan, W.; Huang, S.; Zheng, H.; Yim, J. W. L.; Khanal, D. R.; Ogletree, D. F.; Grossman, J. C. et al. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. Nat. Nanotechnol. 2009, 4, 732-737.
[21]
Mirfakhrai, T.; Madden, J. D. W.; Baughman, R. H. Polymer artificial muscles. Mater. Today 2007, 10, 30-38.
[22]
Cabrera, R.; Merced, E.; Sepúlveda, N.; Fernández, F. E. Dynamics of photothermally driven VO2-coated microcantilevers. J. Appl. Phys. 2011, 110, 094510.
[23]
Wang, K.; Cheng, C.; Cardona, E.; Guan, J. Y.; Liu, K.; Wu, J. Q. Performance limits of microactuation with vanadium dioxide as a solid engine. ACS Nano 2013, 7, 2266-2272.
[24]
Kwan, K. W.; Li, S. J.; Hau, N. Y.; Li, W. D.; Feng, S. P.; Ngan, A. H. W. Light-stimulated actuators based on nickel hydroxide-oxyhydroxide. Sci. Robot. 2018, 3, eaat4051.
[25]
Li, Q. W.; Liu, C. H.; Lin, Y. H.; Liu, L.; Jiang, K. L.; Fan, S. S. Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets. ACS Nano 2015, 9, 409-418.
[26]
Wang, X. S.; Li, Q. Q.; Xie, J.; Jin, Z.; Wang, J. Y.; Li, Y.; Jiang, K. L.; Fan, S. S. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett. 2009, 9, 3137-3141.
[27]
Ma, H.; Wei, Y.; Wang, J. T.; Lin, X. Y.; Wu, W. Y.; Wu, Y.; Zhang, L.; Liu, P.; Wang, J. P.; Li, Q. Q. et al. Freestanding macroscopic metal-oxide nanotube films derived from carbon nanotube film templates. Nano Res. 2015, 8, 2024-2032.
[28]
Lee, S.; Cheng, C.; Guo, H.; Hippalgaonkar, K.; Wang, K.; Suh, J.; Liu, K.; Wu, J. Q. Axially engineered metal-insulator phase transition by graded doping VO2 nanowires. J. Am. Chem. Soc. 2013, 135, 4850-4855.
[29]
He, X.; Punpongjareorn, N.; Liang, W. Z.; Lin, Y.; Chen, C. L.; Jacobson, A. J.; Yang, D. S. Photoinduced strain release and phase transition dynamics of solid-supported ultrathin vanadium dioxide. Sci. Rep. 2017, 7, 10045.
[30]
Zhang, S. X.; Kim, I. S.; Lauhon, L. J. Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams. Nano Lett. 2011, 11, 1443-1447.
[31]
Petrov, G. I.; Yakovlev, V. V.; Squier, J. Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide. Appl. Phys. Lett. 2002, 81, 1023-1025.
[32]
Ke, Y. J.; Wang, S. C.; Liu, G. W.; Li, M.; White, T. J.; Long, Y. Vanadium dioxide: The multistimuli responsive material and its applications. Small 2018, 14, 1802025.
[33]
Wu, J. Q.; Gu, Q.; Guiton, B. S.; de Leon, N. P.; Ouyang, L.; Park, H. Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams. Nano Lett. 2006, 6, 2313-2317.
[34]
Wang, T. Y.; Torres, D.; Fernández, F. E.; Green, A. J.; Wang, C.; Sepúlveda, N. Increasing efficiency, speed, and responsivity of vanadium dioxide based photothermally driven actuators using single-wall carbon nanotube thin-films. ACS Nano 2015, 9, 4371-4378.
[35]
Ma, H.; Zhang, X. P.; Cui, R. X.; Liu, F. F.; Wang, M.; Huang, C. Y.; Hou, J. W.; Wang, G.; Wei, Y.; Jiang, K. L. et al. Photo-driven nanoactuators based on carbon nanocoils and vanadium dioxide bimorphs. Nanoscale 2018, 10, 11158-11164.
[36]
Zhu, S. E.; Shabani, R.; Rho, J.; Kim, Y.; Hong, B. H.; Ahn, J. H.; Cho, H. J. Graphene-based bimorph microactuators. Nano Lett. 2011, 11, 977-981.
[37]
Li, J. Z.; Ma, W. J.; Song, L.; Niu, Z. Q.; Cai, L.; Zeng, Q. S.; Zhang, X. X.; Dong, H. B.; Zhao, D.; Zhou, W. Y. et al. Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett. 2011, 11, 4636-4641.
[38]
Li, M.; Wang, Y.; Chen, A. P.; Naidu, A.; Napier, B. S.; Li, W. Y.; Rodriguez, C. L.; Crooker, S. A.; Omenetto, F. G. Flexible magnetic composites for light-controlled actuation and interfaces. Proc. Natl. Acad. Sci. USA 2018, 115, 8119-8124.
[39]
Baughman, R. H.; Cui, C. X.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G. et al. Carbon nanotube actuators. Science 1999, 284, 1340-1344.
[40]
Acerce, M.; Akdogan, E. K.; Chhowalla, M. Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature 2017, 549, 370-373.
[41]
Cabrera, R.; Merced, E.; Sepúlveda, N. Performance of electro-thermally driven VO2-based MEMS actuators. J. Microelectromech. Syst. 2014, 23, 243-251.
[42]
Kucharczyk, D.; Niklewski, T. Accurate X-ray determination of the lattice parameters and the thermal expansion coefficients of VO2 near the transition temperature. J. Appl. Cryst. 1979, 12, 370-373.
Video
12274_2020_2877_MOESM2_ESM.mov
12274_2020_2877_MOESM3_ESM.mov
File
12274_2020_2877_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 March 2020
Revised: 02 May 2020
Accepted: 13 May 2020
Published: 18 June 2020
Issue date: September 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the Key-Area Research and Development Program of Guangdong Province (No. 2020B010169001), the National Key Research and Development Program of China (No. 2018YFA0208401), the National Natural Science Foundation of China (No. 61774090), the National Key Research and Development Program of China (No. 2017YFA0205803), and the National Natural Science Foundation of China (Nos. 51727805, 51532008, 51472142, and 51802008).

Return