Journal Home > Volume 14 , Issue 2

The development of new two-dimensional (2D) d-π conjugated metal-organic frameworks (MOFs) holds great promise for the construction of a new generation of porous and semiconductive materials. This paper describes the synthesis, structural characterization, and electronic properties of a new d-π conjugated 2D MOF based on the use of a new ligand 2,3,8,9,14,15- hexahydroxytrinaphthylene. The reticular self-assembly of this large π-conjugated organic building block with Cu(II) ions in a mixed solvent system of 1,3-dimethyl-2-imidazolidinone (DMI) and H2O with the addition of ammonia water or ethylenediamine leads to a highly crystalline MOF Cu3(HHTN)2, which possesses pore aperture of 2.5 nm. Cu3(HHTN)2 MOF shows moderate electrical conductivity of 9.01 × 10-8 S·cm-1 at 385 K and temperature-dependent band gap ranging from 0.75 to 1.65 eV. After chemical oxidation by I2, the conductivity of Cu3(HHTN)2 can be increased by 360 times. This access to HHTN based MOF adds an important member to previously reported MOF systems with hexagonal lattice, paving the way towards systematic studies of structure-property relationships of semiconductive MOFs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Two-dimensional d-π conjugated metal-organic framework based on hexahydroxytrinaphthylene

Show Author's information Zheng MengKatherine A. Mirica( )
Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA

Abstract

The development of new two-dimensional (2D) d-π conjugated metal-organic frameworks (MOFs) holds great promise for the construction of a new generation of porous and semiconductive materials. This paper describes the synthesis, structural characterization, and electronic properties of a new d-π conjugated 2D MOF based on the use of a new ligand 2,3,8,9,14,15- hexahydroxytrinaphthylene. The reticular self-assembly of this large π-conjugated organic building block with Cu(II) ions in a mixed solvent system of 1,3-dimethyl-2-imidazolidinone (DMI) and H2O with the addition of ammonia water or ethylenediamine leads to a highly crystalline MOF Cu3(HHTN)2, which possesses pore aperture of 2.5 nm. Cu3(HHTN)2 MOF shows moderate electrical conductivity of 9.01 × 10-8 S·cm-1 at 385 K and temperature-dependent band gap ranging from 0.75 to 1.65 eV. After chemical oxidation by I2, the conductivity of Cu3(HHTN)2 can be increased by 360 times. This access to HHTN based MOF adds an important member to previously reported MOF systems with hexagonal lattice, paving the way towards systematic studies of structure-property relationships of semiconductive MOFs.

Keywords: two-dimensional, metal-organic framework (MOF), trinaphthylene, conductive MOF

References(76)

[1]
C. H. Hendon,; D. Tiana,; A. Walsh, Conductive metal-organic frameworks and networks: Fact or fantasy? Phys. Chem. Chem. Phys. 2012, 14, 13120-13132.
[2]
G. Givaja,; P. Amo-Ochoa,; C. J. Gómez-García,; F. Zamora, Electrical conductive coordination polymers. Chem. Soc. Rev. 2012, 41, 115-147.
[3]
L. Sun,; M. G. Campbell,; M. Dincă, Electrically conductive porous metal-organic frameworks. Angew. Chem., Int. Ed. 2016, 55, 3566-3579.
[4]
M. Ko,; L. Mendecki,; K. A. Mirica, Conductive two-dimensional metal-organic frameworks as multifunctional materials. Chem. Commun. 2018, 54, 7873-7891.
[5]
X. Huang,; P. Sheng,; Z. Y. Tu,; F. J. Zhang,; J. H. Wang,; H. Geng,; Y. Zou,; C. A. Di,; Y. P. Yi,; Y. M. Sun, et al. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 2015, 6, 7408.
[6]
M. Dincă,; F. Léonard, Metal-organic frameworks for electronics and photonics. MRS Bull. 2016, 41, 854-857.
[7]
G. D. Wu,; J. H. Huang,; Y. Zang,; J. He,; G. Xu, Porous field-effect transistors based on a semiconductive metal-organic framework. J. Am. Chem. Soc. 2017, 139, 1360-1363.
[8]
M. G. Campbell,; S. F. Liu,; T. M. Swager,; M. Dincă, Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 13780-13783.
[9]
M. G. Campbell,; D. Sheberla,; S. F. Liu,; T. M. Swager,; M. Dincă, Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem., Int. Ed. 2015, 54, 4349-4352.
[10]
M. K. Smith,; K. E. Jensen,; P. A. Pivak,; K. A. Mirica, Direct self-assembly of conductive nanorods of metal-organic frameworks into chemiresistive devices on shrinkable polymer films. Chem. Mater. 2016, 28, 5264-5268.
[11]
M. K. Smith,; K. A. Mirica, Self-organized frameworks on textiles (SOFT): Conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 2017, 139, 16759-16767.
[12]
M. G. Campbell,; M. Dincă, Metal-organic frameworks as active materials in electronic sensor devices. Sensors 2017, 17, 1108.
[13]
M. S. Yao,; X. J. Lv,; Z. H. Fu,; W. H. Li,; W. H. Deng,; G. D. Wu,; G. Xu, Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem., Int. Ed. 2017, 129, 16737-16741.
[14]
L. Mendecki,; K. A. Mirica, Conductive metal-organic frameworks as ion-to-electron transducers in potentiometric sensors. ACS Appl. Mater. Interfaces 2018, 10, 19248-19257.
[15]
V. Rubio-Gimenez,; N. Almora-Barrios,; G. Escorcia-Ariza,; M. Galbiati,; M. Sessolo,; S. Tatay,; C. Marti-Gastaldo, Origin of the chemiresistive response of ultrathin films of conductive metal-organic frameworks. Angew. Chem., Int. Ed. 2018, 57, 15086-15090.
[16]
Z. Meng,; A. Aykanat,; K. A. Mirica, Welding metallophthalocyanines into bimetallic molecular meshes for ultrasensitive, low-power chemiresistive detection of gases. J. Am. Chem. Soc. 2019, 141, 2046-2053.
[17]
M. L. Aubrey,; M. T. Kapelewski,; J. F. Melville,; J. Oktawiec,; D. Presti,; L. Gagliardi,; J. R. Long, Chemiresistive detection of gaseous hydrocarbons and interrogation of charge transport in Cu[Ni(2,3-pyrazinedithiolate)2] by gas adsorption. J. Am. Chem. Soc. 2019, 141, 5005-5013.
[18]
Z. Y. Wang,; T. Liu,; L. P. Jiang,; M. Asif,; X. Y. Qiu,; Y. Yu,; F. Xiao,; H. F. Liu, Assembling metal-organic frameworks into the fractal scale for sweat sensing. ACS Appl. Mater. Interfaces 2019, 11, 32310-32319.
[19]
Z. Meng,; R. M. Stolz,; L. Mendecki,; K. A. Mirica, Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478-598.
[20]
L. E. Darago,; M. L. Aubrey,; C. J. Yu,; M. I. Gonzalez,; J. R. Long, Electronic conductivity, ferrimagnetic ordering, and reductive insertion mediated by organic mixed-valence in a ferric semiquinoid metal-organic framework. J. Am. Chem. Soc. 2015, 137, 15703-15711.
[21]
J. A. DeGayner,; I. R. Jeon,; L. Sun,; M. Dincă,; T. D. Harris, 2D conductive iron-quinoid magnets ordering up to Tc = 105 K via heterogenous redox chemistry. J. Am. Chem. Soc. 2017, 139, 4175-4184.
[22]
W. B. Li,; L. Sun,; J. S. Qi,; P. Jarillo-Herrero,; M. Dincă,; J. Li, High temperature ferromagnetism in π-conjugated two-dimensional metal-organic frameworks. Chem. Sci. 2017, 8, 2859-2867.
[23]
R. H. Dong,; Z. T. Zhang,; D. C. Tranca,; S. Q. Zhou,; M. C. Wang,; P. Adler,; Z. Q. Liao,; F. Liu,; Y. Sun,; W. J. Shi, et al. A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior. Nat. Commun. 2018, 9, 2637.
[24]
C. Q. Yang,; R. H. Dong,; M. Wang,; P. S. Petkov,; Z. T. Zhang,; M. C. Wang,; P. Han,; M. Ballabio,; S. A. Bräuninger,; Z. Q. Liao, et al. A semiconducting layered metal-organic framework magnet. Nat. Commun. 2019, 10, 3260.
[25]
C. A. Downes,; S. C. Marinescu, Efficient electrochemical and photoelectrochemical H2 production from water by a cobalt dithiolene one-dimensional metal-organic surface. J. Am. Chem. Soc. 2015, 137, 13740-13743.
[26]
R. H. Dong,; M. Pfeffermann,; H. W. Liang,; Z. K. Zheng,; X. Zhu,; J. Zhang,; X. L. Feng, Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 12058-12063.
[27]
E. M. Miner,; T. Fukushima,; D. Sheberla,; L. Sun,; Y. Surendranath,; M. Dincă, Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942.
[28]
H. X. Jia,; Y. C. Yao,; J. T. Zhao,; Y. Y. Gao,; Z. L. Luo,; P. W. Du, A novel two-dimensional nickel phthalocyanine-based metal-organic framework for highly efficient water oxidation catalysis. J. Mater. Chem. A 2018, 6, 1188-1195.
[29]
H. X. Zhong,; K. H. Ly,; M. C. Wang,; Y. Krupskaya,; X. C. Han,; J. C. Zhang,; J. Zhang,; V. Kataev,; B. Büchner,; I. M. Weidinger, et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 10677-10682.
[30]
L. Hu,; T. Z. Xiong,; R. Liu,; Y. W. Hu,; Y. C. Mao,; M. J. T. Balogun,; Y. X. Tong, Co3O4@Cu-based conductive metal-organic framework core-shell nanowire electrocatalysts enable efficient low-overall-potential water splitting. Chem.—Eur. J. 2019, 25, 6575-6583.
[31]
D. Sheberla,; J. C. Bachman,; J. S. Elias,; C. J. Sun,; Y. Shao-Horn,; M. Dincă, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220-224.
[32]
Z. Y. Zhang,; K. Awaga, Redox-active metal-organic frameworks as electrode materials for batteries. MRS Bull. 2016, 41, 883-889.
[33]
J. Park,; M. Lee,; D. W. Feng,; Z. H. Huang,; A. C. Hinckley,; A. Yakovenko,; X. D. Zou,; Y. Cui,; Z. Bao, Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage. J. Am. Chem. Soc. 2018, 140, 10315-10323.
[34]
D. W. Feng,; T. Lei,; M. R. Lukatskaya,; J. Park,; Z. H. Huang,; M. Lee,; L. Shaw,; S. C. Chen,; A. A. Yakovenko,; A. Kulkarni, et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 2018, 3, 30-36.
[35]
S. Y. Zhou,; X. Y. Kong,; B. Zheng,; F. W. Huo,; M. Strømme,; C. Xu, Cellulose nanofiber@conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano 2019, 13, 9578-9586.
[36]
X. H. Zhang,; P. P. Dong,; M. K. Song, Metal-organic frameworks for high-energy lithium batteries with enhanced safety: Recent progress and future perspectives. Batteries Supercaps 2019, 2, 591-626.
[37]
K. W. Nam,; S. S. Park,; R. Dos Reis,; V. P. Dravid,; H. Kim,; C. A. Mirkin,; J. F. Stoddart, Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 2019, 10, 4948.
[38]
M. Hmadeh,; Z. Lu,; Z. Liu,; F. Gándara,; H. Furukawa,; S. Wan,; V. Augustyn,; R. Chang,; L. Liao,; F. Zhou, et al. New porous crystals of extended metal-catecholates. Chem. Mater. 2012, 24, 3511-3513.
[39]
C. F. Leong,; P. M. Usov,; D. M. D’Alessandro, Intrinsically conducting metal-organic frameworks. MRS Bull. 2016, 41, 858-864.
[40]
H. Nagatomi,; N. Yanai,; T. Yamada,; K. Shiraishi,; N. Kimizuka, Synthesis and electric properties of a two-dimensional metal-organic framework based on phthalocyanine. Chem.—Eur. J. 2018, 24, 1806-1810.
[41]
T. Kambe,; R. Sakamoto,; K. Hoshiko,; K. Takada,; M. Miyachi,; J. H. Ryu,; S. Sasaki,; J. Kim,; K. Nakazato,; M. Takata, et al. π-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 2013, 135, 2462-2465.
[42]
A. J. Clough,; J. W. Yoo,; M. H. Mecklenburg,; S. C. Marinescu, Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. J. Am. Chem. Soc. 2015, 137, 118-121.
[43]
J. H. Dou,; L. Sun,; Y. C. Ge,; W. B. Li,; C. H. Hendon,; J. Li,; S. Gul,; J. Yano,; E. A. Stach,; M. Dincă, Signature of metallic behavior in the metal-organic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). J. Am. Chem. Soc. 2017, 139, 13608-13611.
[44]
J. Park,; A. C. Hinckley,; Z. H. Huang,; D. W. Feng,; A. A. Yakovenko,; M. Lee,; S. C. Chen,; X. D. Zou,; Z. Bao, Synthetic routes for a 2D semiconductive copper hexahydroxybenzene metal-organic framework. J. Am. Chem. Soc. 2018, 140, 14533-14537.
[45]
D. Sheberla,; L. Sun,; M. A. Blood-Forsythe,; S. Er,; C. R. Wade,; C. K. Brozek,; A. Aspuru-Guzik,; M. Dincă, High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J. Am. Chem. Soc. 2014, 136, 8859-8862.
[46]
A. J. Clough,; J. M. Skelton,; C. A. Downes,; A. A. de la Rosa,; J. W. Yoo,; A. Walsh,; B. C. Melot,; S. C. Marinescu, Metallic conductivity in a two-dimensional cobalt dithiolene metal-organic framework. J. Am. Chem. Soc. 2017, 139, 10863-10867.
[47]
V. Rubio-Giménez,; M. Galbiati,; J. Castells-Gil,; N. Almora-Barrios,; J. Navarro-Sánchez,; G. Escorcia-Ariza,; M. Mattera,; T. Arnold,; J. Rawle,; S. Tatay, et al. Bottom-up fabrication of semiconductive metal-organic framework ultrathin films. Adv. Mater. 2018, 30, 1704291.
[48]
Y. T. Cui,; J. Yan,; Z. J. Chen,; J. J. Zhang,; Y. Zou,; Y. M. Sun,; W. Xu,; D. B. Zhu, [Cu3(C6Se6)]n: The first highly conductive 2D π-d conjugated coordination polymer based on benzenehexaselenolate. Adv. Sci. 2019, 6, 1802235.
[49]
Y. T. Cui,; J. Yan,; Z. J. Chen,; W. L. Xing,; C. H. Ye,; X. Li,; Y. Zou,; Y. M. Sun,; C. M. Liu,; W. Xu, et al. Synthetic route to a triphenylenehexaselenol-based metal organic framework with semi-conductive and glassy magnetic properties. iScience 2020, 23, 100812.
[50]
M. Eddaoudi,; J. Kim,; N. Rosi,; D. Vodak,; J. Wachter,; M. O'Keeffe,; O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469-472.
[51]
H. Furukawa,; N. Ko,; Y. B. Go,; N. Aratani,; S. B. Choi,; E. Choi,; A. O. Yazaydin,; R. Q. Snurr,; M. O'Keeffe,; J. Kim, et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424-428.
[52]
H. Furukawa,; Y. B. Go,; N. Ko,; Y. K. Park,; F. J. Uribe-Romo,; J. Kim,; M. O'Keeffe,; O. M. Yaghi, Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg. Chem. 2011, 50, 9147-9152.
[53]
H. Deng,; S. Grunder,; K. E. Cordova,; C. Valente,; H. Furukawa,; M. Hmadeh,; F. Gandara,; A. C. Whalley,; Z. Liu,; S. Asahina, et al. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018-1023.
[54]
A. Walsh,; K. T. Butler,; C. H. Hendon, Chemical principles for electroactive metal-organic frameworks. MRS Bull. 2016, 41, 870-876.
[55]
E. C. Rüdiger,; F. Rominger,; L. Steuer,; U. H. Bunz, Synthesis of substituted trinaphthylenes. J. Org. Chem. 2016, 81, 193-196.
[56]
W. H. Li,; K. Ding,; H. R. Tian,; M. S. Yao,; B. Nath,; W. H. Deng,; Y. B. Wang,; G. Xu, Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater. 2017, 27, 1702067.
[57]
S. Chen,; J. Dai,; X. C. Zeng, Metal-organic kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): From semiconducting to metallic by metal substitution. Phys. Chem. Chem. Phys. 2015, 17, 5954-5958.
[58]
M. Ko,; A. Aykanat,; M. K. Smith,; K. A. Mirica, Drawing sensors with ball-milled blends of metal-organic frameworks and graphite. Sensors 2017, 17, 2192.
[59]
H. Y. Fan, Temperature dependence of the energy gap in semiconductors. Phys. Rev. 1951, 82, 900-905.
[60]
Y. P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149-154.
[61]
W. Bludau,; A. Onton,; W. Heinke, Temperature dependence of the band gap of silicon. J. Appl. Phys. 1974, 45, 1846-1848.
[62]
H. Ünlü, A thermodynamic model for determining pressure and temperature effects on the bandgap energies and other properties of some semiconductors. Solid State Electron. 1992, 35, 1343-1352.
[63]
P. J. Geng,; W. G. Li,; X. H. Zhang,; X. Y. Zhang,; Y. Deng,; H. B. Kou, A novel theoretical model for the temperature dependence of band gap energy in semiconductors. J. Phys. D: Appl. Phys. 2017, 50, 40LT02.
[64]
M. Birkett,; W. M. Linhart,; J. Stoner,; L. J. Phillips,; K. Durose,; J. Alaria,; J. D. Major,; R. Kudrawiec,; T. D. Veal, Band gap temperature-dependence of close-space sublimation grown Sb2Se3 by photo-reflectance. APL Mater. 2018, 6, 084901.
[65]
D. Chirvase,; Z. Chiguvare,; M. Knipper,; J. Parisi,; V. Dyakonov,; J. C. Hummelen, Temperature dependent characteristics of poly(3- hexylthiophene)-fullerene based heterojunction organic solar cells. J. Appl. Phys. 2003, 93, 3376-3383.
[66]
A. Mirsakiyeva,; H. W. Hugosson,; M. Linares,; A. Delin, Temperature dependence of band gaps and conformational disorder in PEDOT and its selenium and tellurium derivatives: Density functional calculations. J. Chem. Phys. 2017, 147, 134906.
[67]
S. Wang,; J. Q. Ma,; W. C. Li,; J. Wang,; H. Z. Wang,; H. Z. Shen,; J. Z. Li,; J. Q. Wang,; H. M. Luo,; D. H. Li, Temperature-dependent band gap in two-dimensional perovskites: Thermal expansion interaction and electron-phonon interaction. J. Phys. Chem. Lett. 2019, 10, 2546-2553.
[68]
P. Tyagi,; A. G. Vedeshwar, Grain size dependent optical band gap of CdI2 films. Bull. Mater. Sci. 2001, 24, 297-300.
[69]
B. Pejova,; I. Grozdanov,; A. Tanuševski, Optical and thermal band gap energy of chemically deposited bismuth(III) selenide thin films. Mater. Chem. Phys. 2004, 83, 245-249.
[70]
D. Tiana,; C. H. Hendon,; A. Walsh,; T. P. Vaid, Computational screening of structural and compositional factors for electrically conductive coordination polymers. Phys. Chem. Chem. Phys. 2014, 16, 14463-14472.
[71]
T. Kambe,; R. Sakamoto,; T. Kusamoto,; T. Pal,; N. Fukui,; K. Hoshiko,; T. Shimojima,; Z. F. Wang,; T. Hirahara,; K. Ishizaka, et al. Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: A potential organic two-dimensional topological insulator. J. Am. Chem. Soc. 2014, 136, 14357-14360.
[72]
Y. Jiang,; I. Oh,; S. H. Joo,; O. Buyukcakir,; X. Chen,; S. H. Lee,; M. Huang,; W. K. Seong,; S. K. Kwak,; J. W. Yoo, et al. Partial oxidation-induced electrical conductivity and paramagnetism in a Ni(II) tetraaza[14]annulene-linked metal organic framework. J. Am. Chem. Soc. 2019, 141, 16884-16893.
[73]
M. L. Aubrey,; B. M. Wiers,; S. C. Andrews,; T. Sakurai,; S. E. Reyes-Lillo,; S. M. Hamed,; C. J. Yu,; L. E. Darago,; J. A. Mason,; J. O. Baeg, et al. Electron delocalization and charge mobility as a function of reduction in a metal-organic framework. Nat. Mater. 2018, 17, 625-632.
[74]
S. Bi,; H. Banda,; M. Chen,; L. Niu,; M. Y. Chen,; T. Z. Wu,; J. S. Wang,; R. X. Wang,; J. M. Feng,; T. Y. Chen, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater. 2020, 19, 552-558.
[75]
Y. G. Zhang,; S. N. Riduan,; J. Q. Wang, Redox active metal- and covalent organic frameworks for energy storage: Balancing porosity and electrical conductivity. Chem.—Eur. J. 2017, 23, 16419-16431.
[76]
P. F. Li,; B. Wang, Recent development and application of conductive MOFs. Isr. J. Chem. 2018, 58, 1010-1018.
File
12274_2020_2874_MOESM1_ESM.pdf (6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 January 2020
Revised: 30 April 2020
Accepted: 11 May 2020
Published: 03 July 2020
Issue date: February 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors acknowledge support from startup funds provided by Dartmouth College, from the Walter and Constance Burke Research Initiation Award, Irving Institute for Energy and Society, Army Research Office Young Investigator Program Grant No. W911NF-17-1-0398, Sloan Research Fellowship (No. FG-2018-10561), 3M Non-Tenured Faculty Award, and US Army Cold Regions Research & Engineering Lab (No. W913E519C0008), National Science Foundation EPSCoR award (No. #1757371). The authors thank the University Instrumentation Center at the University of New Hampshire (Durham, NH, USA) for the access to XPS.

Return