Journal Home > Volume 13 , Issue 8

Two-dimensional (2D) heterostructures based on the combination of transition metal dichalcogenides (TMDs) and transition metal oxides (TMOs) have aroused growing attention due to their integrated merits of both components and multiple functionalities. However, nondestructive approaches of constructing TMD-TMO heterostructures are still very limited. Here, we develop a novel type of lateral TMD-TMO heterostructure (NbS2-Nb2O5-NbS2) using a simple lithography-free, direct laser-patterning technique. The perfect contact of an ultrathin TMO channel (Nb2O5) with two metallic TMDs (NbS2) electrodes guarantee strong electrical signals in a two-terminal sensor. Distinct from sensing mechanisms in separate TMOs or TMDs, this sensor works based on the modulation of surface conduction of the ultrathin TMO (Nb2O5) channel through an adsorbed layer of water molecules. The sensor thus exhibits high selectivity and ultrahigh sensitivity for room-temperature detection of NH3R/R = 80% at 50 ppm), superior to the reported NH3 sensors based on 2D materials, and a positive temperature coefficient of resistance as high as 15%-20%/°C. Bending-invariant performance and high reliability are also demonstrated in flexible versions of sensors. Our work provides a new strategy of lithography-free processing of novel TMD-TMO heterostructures towards high-performance sensors, showing great potential in the applications of future portable and wearable electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors

Show Author's information Bolun Wang1Hao Luo1Xuewen Wang1Enze Wang1Yufei Sun1Yu-Chien Tsai2Jinxuan Dong3Peng Liu2Huanglong Li4Yong Xu3,5Sefaattin Tongay6Kaili Jiang2,3Shoushan Fan2,3Kai Liu1( )
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
Department of Precision Instrument, Center for Brain Inspired Computing Research, Tsinghua University, Beijing 100084, China
RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA

Abstract

Two-dimensional (2D) heterostructures based on the combination of transition metal dichalcogenides (TMDs) and transition metal oxides (TMOs) have aroused growing attention due to their integrated merits of both components and multiple functionalities. However, nondestructive approaches of constructing TMD-TMO heterostructures are still very limited. Here, we develop a novel type of lateral TMD-TMO heterostructure (NbS2-Nb2O5-NbS2) using a simple lithography-free, direct laser-patterning technique. The perfect contact of an ultrathin TMO channel (Nb2O5) with two metallic TMDs (NbS2) electrodes guarantee strong electrical signals in a two-terminal sensor. Distinct from sensing mechanisms in separate TMOs or TMDs, this sensor works based on the modulation of surface conduction of the ultrathin TMO (Nb2O5) channel through an adsorbed layer of water molecules. The sensor thus exhibits high selectivity and ultrahigh sensitivity for room-temperature detection of NH3R/R = 80% at 50 ppm), superior to the reported NH3 sensors based on 2D materials, and a positive temperature coefficient of resistance as high as 15%-20%/°C. Bending-invariant performance and high reliability are also demonstrated in flexible versions of sensors. Our work provides a new strategy of lithography-free processing of novel TMD-TMO heterostructures towards high-performance sensors, showing great potential in the applications of future portable and wearable electronics.

Keywords: sensor, niobium disulfide, two-dimensional heterostructure, niobium oxide, laser patterning

References(45)

[1]
Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625-628.
[2]
Liu, C. S.; Yan, X.; Song, X. F.; Ding, S. J.; Zhang, D. W.; Zhou, P. A semi-floating gate memory based on van der waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404-410.
[3]
Cheng, R. Q.; Wang, F.; Yin, L.; Wang, Z. X.; Wen, Y.; Shifa, T. A.; He, J. High-performance, multifunctional devices based on asymmetric van der waals heterostructures. Nat. Electron. 2018, 1, 356-361.
[4]
Hou, J. W.; Wang, X.; Fu, D. Y.; Ko, C.; Chen, Y. B.; Sun, Y. F.; Lee, S.; Wang, K. X.; Dong, K. C.; Sun, Y. H. et al. Modulating photoluminescence of monolayer molybdenum disulfide by metal-insulator phase transition in active substrates. Small 2016, 12, 3976-3984.
[5]
Huh, W.; Jang, S.; Lee, J. Y.; Lee, D.; Lee, D.; Lee, J. M.; Park, H. G.; Kim, J. C.; Jeong, H. Y.; Wang, G. et al. Synaptic barristor based on phase-engineered 2D heterostructures. Adv. Mater. 2018, 30, 1801447.
[6]
Luo, H.; Wang, B. L.; Wang, E. Z.; Wang, X. W.; Sun, Y. F.; Li, Q. Q.; Fan, S. S.; Cheng, C.; Liu, K. Phase-transition modulated, high-performance dual-mode photodetectors based on WSe2/VO2 heterojunctions. Appl. Phys. Rev. 2019, 6, 041407.
[7]
Wang, B. L.; Luo, H.; Wang, X. W.; Wang, E. Z.; Sun, Y. F.; Tsai, Y. C.; Zhu, H.; Liu, P.; Jiang, K. L.; Liu, K. Bifunctional NbS2-based asymmetric heterostructure for lateral and vertical electronic devices. ACS Nano 2020, 14, 175-184.
[8]
Yuan, Z. Q.; Hou, J. W.; Liu, K. Interfacing 2D semiconductors with functional oxides: Fundamentals, properties, and applications. Crystals 2017, 7, 265.
[9]
Eranna, G.; Joshi, B. C.; Runthala, D. P.; Gupta, R. P. Oxide materials for development of integrated gas sensors-a comprehensive review. Crit. Rev. Solid State Mater. Sci. 2004, 29, 111-188.
[10]
Timmer, B.; Olthuis, W.; Van Den Berg, A. Ammonia sensors and their applications-a review. Sensor Actuat. B Chem. 2005, 107, 666-677.
[11]
Late, D. J.; Huang, Y. K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 2013, 7, 4879-4891.
[12]
Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M. Z.; Chen, P.; Wang, S. P.; Shi, D. X.; Sun, Q. J.; Zhang, G. Y. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076.
[13]
Anichini, C.; Czepa, W.; Pakulski, D.; Aliprandi, A.; Ciesielski, A.; Samori, P. Chemical sensing with 2D materials. Chem. Soc. Rev. 2018, 47, 4860-4908.
[14]
Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.
[15]
Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; De Lara, D. P.; Jarillo-Herrero, P.; Gorbachev, R. V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53-68.
[16]
Wu, Z. T.; Luo, Z. Z.; Shen, Y. T.; Zhao, W. W.; Wang, W. H.; Nan, H. Y.; Guo, X. T.; Sun, L. T.; Wang, X. R.; You, Y. M. et al. Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation. Nano Res. 2016, 9, 3622-3631.
[17]
Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der waals metal-semiconductor junctions. Nature 2018, 557, 696-700.
[18]
Liu, B. L.; Chen, L.; Liu, G.; Abbas, A. N.; Fathi, M.; Zhou, C. W. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304-5314.
[19]
Cho, B.; Yoon, J.; Lim, S. K.; Kim, A. R.; Kim, D. H.; Park, S. G.; Kwon, J. D.; Lee, Y. J.; Lee, K. H.; Lee, B. H. et al. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces 2015, 7, 16775-16780.
[20]
Qin, Z. Y.; Zeng, D. W.; Zhang, J.; Wu, C. Y.; Wen, Y. W.; Shan, B.; Xie, C. S. Effect of layer number on recovery rate of WS2 nanosheets for ammonia detection at room temperature. Appl. Surf. Sci. 2017, 414, 244-250.
[21]
Late, D. J.; Doneux, T.; Bougouma, M. Single-layer MoSe2 based NH3 gas sensor. Appl. Phys. Lett. 2014, 105, 233103.
[22]
Perkins, R.; Ruegg, A.; Fischer, M.; Streit, P.; Menth, A. A new PTC resistor for power applications. IEEE Trans. Compon. Hybr. Manuf. Technol. 1982, 5, 225-230.
[23]
Hendrix, B. C.; Wang, X.; Chen, W.; Cui, W. Q. Understanding doped V2O3 as a functional positive temperature coefficient material. J. Mater. Sci. Mater. Electron. 1992, 3, 113-119.
[24]
Sinclair, D. C.; West, A. R. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 1989, 66, 3850-3856.
[25]
Huybrechts, B.; Ishizaki, K.; Takata, M. The positive temperature coefficient of resistivity in barium titanate. J. Mater. Sci. 1995, 30, 2463-2474.
[26]
Fu, Q. D.; Wang, X. W.; Zhou, J. D.; Xia, J.; Zeng, Q. S.; Lv, D. H.; Zhu, C.; Wang, X. L.; Shen, Y.; Li, X. M. et al. One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2. Chem. Mater. 2018, 30, 4001-4007.
[27]
Masubuchi, S.; Morimoto, M.; Morikawa, S.; Onodera, M.; Asakawa, Y.; Watanabe, K.; Taniguchi, T.; Machida, T. Autonomous robotic searching and assembly of two-dimensional crystals to build van der waals superlattices. Nat. Commun. 2018, 9, 1413.
[28]
Wang, X. S.; Lin, J. H.; Zhu, Y. M.; Luo, C.; Suenaga, K.; Cai, C. Z.; Xie, L. M. Chemical vapor deposition of trigonal prismatic NbS2 monolayers and 3R-polytype few-layers. Nanoscale 2017, 9, 16607-16611.
[29]
Jehng, J. M.; Wachs, I. E. Structural chemistry and raman spectra of niobium oxides. Chem. Mater. 1991, 3, 100-107.
[30]
Kim, J. W.; Augustyn, V.; Dunn, B. The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Adv. Energy Mater. 2012, 2, 141-148.
[31]
Nico, C.; Monteiro, T.; Graca, M. P. F. Niobium oxides and niobates physical properties: Review and prospects. Prog. Mater. Sci. 2016, 80, 1-37.
[32]
Kurioka, N.; Watanabe, D.; Haneda, M.; Shimanouchi, T.; Mizushima, T.; Kakuta, N.; Ueno, A.; Hanaoka, T.; Sugi, Y. Preparation of niobium oxide films as a humidity sensor. Catal. Today 1993, 16, 495-501.
[33]
Asay, D. B.; Kim, S. H. Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. B 2005, 109, 16760-16763.
[34]
Hatch, C. D.; Wiese, J. S.; Crane, C. C.; Harris, K. J.; Kloss, H. G.; Baltrusaitis, J. Water adsorption on clay minerals as a function of relative humidity: Application of BET and Freundlich adsorption models. Langmuir 2012, 28, 1790-1803.
[35]
Traversa, E. Ceramic sensors for humidity detection: The state-of-the-art and future developments. Sens. Actuat. B Chem. 1995, 23, 135-156.
[36]
Feng, J.; Peng, L. L.; Wu, C. Z.; Sun, X.; Hu, S. L.; Lin, C. W.; Dai, J.; Yang, J. L.; Xie, Y. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 2012, 24, 1969-1974.
[37]
Egashira, M.; Nakashima, M.; Kawasumi, S.; Selyama, T. Temperature programmed desorption study of water adsorbed on metal oxides. 2. Tin oxide surfaces. J. Phys. Chem. 1981, 85, 4125-4130.
[38]
Gi, R. S.; Mizumasa, T.; Akiba, Y.; Hirose, Y.; Kurosu, T.; Iida, M. Formation mechanism of p-type surface conductive layer on deposited diamond films. Jpn. J. Appl. Phys. 1995, 34, 5550-5555.
[39]
Maier, F.; Riedel, M.; Mantel, B.; Ristein, J.; Ley, L. Origin of surface conductivity in diamond. Phys. Rev. Lett. 2000, 85, 3472-3475.
[40]
Brown, G. E.; Henrich, V. E.; Casey, W. H.; Clark, D. L.; Eggleston, C.; Felmy, A.; Goodman, D. W.; Grätzel, M.; Maciel, G.; McCarthy, M. I. et al. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 1999, 99, 77-174.
[41]
Shi, W. D.; Huo, L. H.; Wang, H. S.; Zhang, H. J.; Yang, J. H.; Wei, P. H. Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures. Nanotechnology 2006, 17, 2918-2924.
[42]
Kim, Y. H.; Kim, S. J.; Kim, Y. J.; Shim, Y. S.; Kim, S. Y.; Hong, B. H.; Jang, H. W. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 2015, 9, 10453-10460.
[43]
Qin, Z. Y.; Xu, K.; Yue, H. C.; Wang, H.; Zhang, J.; Ouyang, C.; Xie, C. S.; Zeng, D. W. Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation. Sens. Actuat. B Chem. 2018, 262, 771-779.
[44]
Yavari, F.; Castillo, E.; Gullapalli, H.; Ajayan, P. M.; Koratkar, N. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 2012, 100, 203120.
[45]
Park, S. Y.; Kim, Y.; Kim, T.; Eom, T. H.; Kim, S. Y.; Jang, H. W. Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InfoMat 2019, 1, 289-316.
File
12274_2020_2872_MOESM1_ESM.pdf (4.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 April 2020
Revised: 03 May 2020
Accepted: 10 May 2020
Published: 05 August 2020
Issue date: August 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We thank Prof. Yadong Li and Prof. Xiaofeng Feng for their helpful discussions. This work was financially supported by Basic Science Center Project of the National Natural Science Foundation of China (NSFC) (No. 51788104), the National Key R&D Program of China (No. 2018YFA0208400), the National Natural Science Foundation of China (Nos. 51972193 and 11774191), and Fok Ying-Tong Education Foundation (No. 161042)

Return