Journal Home > Volume 13 , Issue 9

Lithium (Li) metal is one of the most promising anodes for next-generation energy storage systems. However, the Li dendrite formation and unstable solid-electrolyte interface (SEI) have hindered its further application. Lithium nitrate (LiNO3) is extensively used as an effective electrolyte additive in ether-based electrolytes to improve the stability of lithium metal. Nevertheless, it is rarely utilized in carbonate electrolytes due to its low solubility. Here, a novel gel polymer electrolyte (GPE) consisting of poly(vinylidene fluoride) (PVDF), poly(methyl methacrylate) (PMMA), poly(ethylene oxide) (PEO) with LiNO3 additive is proposed to solve this issue. In this GPE, polyether-based PEO serves as a matrix for dissolving LiNO3 which can be decomposed into a fast Li-ion conductor (Li3N) in conventional carbonate electrolytes to enhance the stability and Li+ conductivity of the SEI film. As a result, dendrite formation is effectively suppressed, and a significantly improved average Coulombic efficiency (CE) of 97.2% in Li-Cu cell is achieved. By using this novel GPE coupled with Li anode and LiNi0.5Mn0.3Co0.2O2 (NMC532), excellent capacity retention of 94.1% and high average CE of over 99.2% are obtained after 200 cycles at 0.5 C. This work presents fresh insight into practical modification strategies on high-voltage Li metal batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries

Show Author's information Zijian WangKai YangYongli SongHai LinKe LiYanhui CuiLuyi Yang( )Feng Pan( )
School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China

Abstract

Lithium (Li) metal is one of the most promising anodes for next-generation energy storage systems. However, the Li dendrite formation and unstable solid-electrolyte interface (SEI) have hindered its further application. Lithium nitrate (LiNO3) is extensively used as an effective electrolyte additive in ether-based electrolytes to improve the stability of lithium metal. Nevertheless, it is rarely utilized in carbonate electrolytes due to its low solubility. Here, a novel gel polymer electrolyte (GPE) consisting of poly(vinylidene fluoride) (PVDF), poly(methyl methacrylate) (PMMA), poly(ethylene oxide) (PEO) with LiNO3 additive is proposed to solve this issue. In this GPE, polyether-based PEO serves as a matrix for dissolving LiNO3 which can be decomposed into a fast Li-ion conductor (Li3N) in conventional carbonate electrolytes to enhance the stability and Li+ conductivity of the SEI film. As a result, dendrite formation is effectively suppressed, and a significantly improved average Coulombic efficiency (CE) of 97.2% in Li-Cu cell is achieved. By using this novel GPE coupled with Li anode and LiNi0.5Mn0.3Co0.2O2 (NMC532), excellent capacity retention of 94.1% and high average CE of over 99.2% are obtained after 200 cycles at 0.5 C. This work presents fresh insight into practical modification strategies on high-voltage Li metal batteries.

Keywords: gel polymer electrolyte, lithium nitrate, Li anode, Li dendrite, electrolyte additives

References(41)

[1]
Lu, J.; Chen, Z. W.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 2018, 1, 35-53.
[2]
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
[3]
Du, H. R.; Huang, K. F.; Li, M.; Xia, Y. Y.; Sun, Y. X.; Yu, M. K.; Geng, B. Y. Gas template-assisted spray pyrolysis: A facile strategy to produce porous hollow Co3O4 with tunable porosity for high-performance lithium-ion battery anode materials. Nano Res. 2018, 11, 1490-1499.
[4]
Liu, T. C.; Lin, L. P.; Bi, X. X.; Tian, L. L.; Yang, K.; Liu, J. J.; Li, M. F.; Chen, Z. H.; Lu, J.; Amine, K. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 2019, 14, 50-56.
[5]
Xiang, J. W.; Yang, L. Y.; Yuan, L. X.; Yuan, K.; Zhang, Y.; Huang, Y. Y.; Lin, J.; Pan, F.; Huang, Y. H. Alkali-metal anodes: From lab to market. Joule 2019, 3, 2334-2363.
[6]
Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186-13200.
[7]
Liu, H.; Liu, M. Q.; Yang, L. Y.; Song, Y. L.; Wang, X. B.; Yang, K.; Pan, F. A bi-functional redox mediator promoting the ORR and OER in non-aqueous Li-O2 batteries. Chem. Commun. 2019, 55, 6567-6570.
[8]
Jiang, Z. P.; Jin, L.; Han, Z. L.; Hu, W.; Zeng, Z. Q.; Sun, Y. L.; Xie, J. Facile generation of polymer-alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability. Angew. Chem., Int. Ed. 2019, 58, 11374-11378.
[9]
Wang, M. Q.; Peng, Z.; Luo, W. W.; Ren, F. H.; Li, Z. D.; Zhang, Q.; He, H. Y.; Ouyang, C. Y.; Wang, D. Y. Tailoring lithium deposition via an SEI-functionalized membrane derived from LiF decorated layered carbon structure. Adv. Energy Mater. 2019, 9, 1802912.
[10]
Huang, Z. J.; Zhou, G. M.; Lv, W.; Deng, Y. Q.; Zhang, Y. B.; Zhang, C.; Kang, F. Y.; Yang, Q. H. Seeding lithium seeds towards uniform lithium deposition for stable lithium metal anodes. Nano Energy 2019, 61, 47-53.
[11]
Kim, J. Y.; Liu, G. C.; Tran, M. X.; Ardhi, R. E. A.; Kim, H.; Lee, J. K. Synthesis and characterization of a hierarchically structured three-dimensional conducting scaffold for highly stable Li metal anodes. J. Mater. Chem. A 2019, 7, 12882-12892.
[12]
Song, H. Y.; Chen, X. L.; Zheng, G. L.; Yu, X. J.; Jiang, S. F.; Cui, Z. M.; Du, L.; Liao, S. J. Dendrite-free composite Li anode assisted by ag nanoparticles in a wood-derived carbon frame. ACS Appl. Mater. Interfaces 2019, 11, 18361-18367.
[13]
Zhao, F.; Zhou, X. F.; Deng, W.; Liu, Z. P. Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes. Nano Energy 2019, 62, 55-63.
[14]
Qian, J.; Li, Y.; Zhang, M. L.; Luo, R.; Wang, F. J.; Ye, Y. S.; Xing, Y.; Li, W. L.; Qu, W. J.; Wang, L. L. et al. Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield. Nano Energy 2019, 60, 866-874.
[15]
Liu, Q. Y.; Yang, G. J.; Liu, S.; Han, M.; Wang, Z. X.; Chen, L. Q. Trimethyl borate as film-forming electrolyte additive to improve high-voltage performances. ACS Appl. Mater. Interfaces 2019, 11, 17435-17443.
[16]
Zheng, J. M.; Engelhard, M. H.; Mei, D. H.; Jiao, S. H.; Polzin, B. J.; Zhang, J. G.; Xu, W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2017, 2, 17012.
[17]
Hu, Z. L.; Zhang, S.; Dong, S. M.; Li, Q.; Cui, G. L.; Chen, L. Q. Self-stabilized solid electrolyte interface on a host-free Li-metal anode toward high areal capacity and rate utilization. Chem. Mater. 2018, 30, 4039-4047.
[18]
Yu, L.; Chen, S. R.; Lee, H.; Zhang, L. C.; Engelhard, M. H.; Li, Q. Y.; Jiao, S. H.; Liu, J.; Xu, W.; Zhang, J. G. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 2018, 3, 2059-2067.
[19]
Song, Y. L.; Yang, L. Y.; Zhao, W. G.; Wang, Z. J.; Zhao, Y.; Wang, Z. Q.; Zhao, Q. H.; Liu, H.; Pan, F. Revealing the short-circuiting mechanism of garnet-based solid-state electrolyte. Adv. Energy Mater. 2019, 9, 1900671.
[20]
Wang, K.; Yang, L. Y.; Wang, Z. Q.; Zhao, Y.; Wang, Z. J.; Han, L.; Song, Y. L.; Pan, F. Enhanced lithium dendrite suppressing capability enabled by a solid-like electrolyte with different-sized nanoparticles. Chem. Commun. 2018, 54, 13060-13063.
[21]
Zhang, X. K.; Xie, J.; Shi, F. F.; Lin, D. C.; Liu, Y. Y.; Liu, W.; Pei, A.; Gong, Y. J.; Wang, H. X.; Liu, K. et al. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 2018, 18, 3829-3838.
[22]
Zhang, Y. B.; Chen, R. J.; Wang, S.; Liu, T.; Xu, B. Q.; Zhang, X.; Wang, X. Z.; Shen, Y.; Lin, Y. H.; Li, M. et al. Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. Energy Storage Mater. 2020, 25, 145-153.
[23]
Liang, X.; Wen, Z. Y.; Liu, Y.; Wu, M. F.; Jin, J.; Zhang, H.; Wu, X. W. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power Sources 2011, 196, 9839-9843.
[24]
Zhang, S. S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 2012, 70, 344-348.
[25]
Xu, G. J.; Pang, C. G.; Chen, B. B.; Ma, J.; Wang, X.; Chai, J. C.; Wang, Q. F.; An, W. Z.; Zhou, X. H.; Cui, G. L. et al. Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-Ion Batteries. Adv. Energy Mater. 2018, 8, 1701398.
[26]
Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem., Int. Ed. 2018, 57, 5301-5305.
[27]
Zhang, B. K.; Tan, R.; Yang, L. Y.; Zheng, J. X.; Zhang, K. C.; Mo, S. J.; Lin, Z.; Pan, F. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Mater. 2018, 10, 139-159.
[28]
Dong, T. T.; Zhang, J. J.; Xu, G. J.; Chai, J. C.; Du, H. P.; Wang, L. L.; Wen, H. J.; Zang, X.; Du, A. B.; Jia, Q. M. et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 2018, 11, 1197-1203.
[29]
Wang, C.; Wang, T.; Wang, L. L.; Hu, Z. L.; Cui, Z. L.; Li, J. D.; Dong, S. M.; Zhou, X. H.; Cui, G. L. Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv. Sci. 2019, 6, 1901036.
[30]
Yang, L. Y.; Wang, Z. J.; Feng, Y. C.; Tan, R.; Zuo, Y. X.; Gao, R. T.; Zhao, Y.; Han, L.; Wang, Z. Q.; Pan, F. Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li-electrolyte interface for solid state lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1701437.
[31]
Yue, L. P.; Ma, J.; Zhang, J. J.; Zhao, J. W.; Dong, S. M.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016, 5, 139-164.
[32]
Chai, J. C.; Liu, Z. H.; Zhang, J. J.; Sun, J. R.; Tian, Z. Y.; Ji, Y. Y.; Tang, K.; Zhou, X. H.; Cui, G. L. A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 17897-17905.
[33]
Zhu, M.; Wu, J. X.; Wang, Y.; Song, M. M.; Long, L.; Siyal, S. H.; Yang, X. P.; Sui, G. Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 2019, 37, 126-142.
[34]
Liu, Y. Y.; Lin, D. C.; Li, Y. Z.; Chen, G. X.; Pei, A.; Nix, O.; Li, Y. B.; Cui, Y. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 2018, 9, 3656.
[35]
Shi, Q. W.; Zhong, Y. R.; Wu, M.; Wang, H. Z.; Wang, H. L. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc. Natl. Acad. Sci. USA 2018, 115, 5676-5680.
[36]
Yan, C.; Yao, Y. X.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem., Int. Ed. 2018, 57, 14055-14059.
[37]
Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.
[38]
Zhou, Q.; Ma, J.; Dong, S. M.; Li, X. F.; Cui, G. L. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 2019, 31, 1902029.
[39]
Rietman, E. A.; Kaplan, M. L.; Cava, R. J. Lithium ion-poly (ethylene oxide) complexes. I. Effect of anion on conductivity. Solid State Ionics 1985, 17, 67-73.
[40]
Chen, T.; Kong, W. H.; Zhang, Z. W.; Wang, L.; Hu, Y.; Zhu, G. Y.; Chen, R. P.; Ma, L. B.; Yan, W.; Wang, Y. R. et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 2018, 54, 17-25.
[41]
Alpen, U. V.; Rabenau, A.; Talat, G. H. Ionic conductivity in Li3N single crystals. Appl. Phys. Lett. 1977, 30, 621-623.
File
12274_2020_2871_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 March 2020
Revised: 17 April 2020
Accepted: 10 May 2020
Published: 25 June 2020
Issue date: September 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by National Key R&D Program of China (No. 2016YFB0700600), Soft Science Research Project of Guangdong Province (No. 2017B030301013), and Shenzhen Science and Technology Research Grant (No. ZDSYS201707281026184).

Return