Journal Home > Volume 13 , Issue 9

Molecular recognition between nucleobases plays a crucial role in all kinds of biological processes. However, real-space investigation of the recognition capability of nucleobases in the presence of interfering compounds remains unexplored. Herein, based on the combination of scanning tunneling microscopy imaging and density functional theory modeling, we report the impact of the presence of melamine (M) on the formation and chirality of guanine (G)-tetrads on Au(111). Although M can interact with G by double hydrogen bonding, the Hoogsteen base pairing of G is not compromised, forming identical individual G-tetrads as would have happened without the presence of M. G-tetrads coexist with M on the surface not only in separate domains, but also within the mixture network of G-tetrads and M-dimers. Although the adsorption orientation of G-tetrads in the mixture network diversifies into two distinct angles, all G-tetrads in the network keep the same chirality, emphasizing the high preference of homochirality in such biochemical systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Molecular recognition and homochirality preservation of guanine tetrads in the presence of melamine

Show Author's information Yanghan Chen1,2,§Chong Chen2,§Pengcheng Ding1,2Guoqiang Shi2Ye Sun1Lev N. Kantorovich3Flemming Besenbacher4Miao Yu2( )
Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
Department of Physics, King’s College London, London WC2R 2LS, UK
Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark

§ Yanghan Chen and Chong Chen contributed equally to this work.

Abstract

Molecular recognition between nucleobases plays a crucial role in all kinds of biological processes. However, real-space investigation of the recognition capability of nucleobases in the presence of interfering compounds remains unexplored. Herein, based on the combination of scanning tunneling microscopy imaging and density functional theory modeling, we report the impact of the presence of melamine (M) on the formation and chirality of guanine (G)-tetrads on Au(111). Although M can interact with G by double hydrogen bonding, the Hoogsteen base pairing of G is not compromised, forming identical individual G-tetrads as would have happened without the presence of M. G-tetrads coexist with M on the surface not only in separate domains, but also within the mixture network of G-tetrads and M-dimers. Although the adsorption orientation of G-tetrads in the mixture network diversifies into two distinct angles, all G-tetrads in the network keep the same chirality, emphasizing the high preference of homochirality in such biochemical systems.

Keywords: molecular recognition, guanine-tetrad, base pairing, homochirality, biochemical synthesis

References(31)

[1]
Watson, J. D.; Crick, F. H. C. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1953, 171, 737-738.
[2]
Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561-563.
[3]
Bada, J. L.; Lazcano, A. Some like it hot, but not the first biomolecules. Science 2002, 296, 1982-1983.
[4]
Otero, R.; Schöck, M.; Molina, L. M.; Laegsgaard, E.; Stensgaard, I.; Hammer, B.; Besenbacher, F. Guanine quartet networks stabilized by cooperative hydrogen bonds. Angew. Chem., Int. Ed. 2005, 44, 2270-2275.
[5]
Mamdouh, W.; Dong, M. D.; Xu, S. L.; Rauls, E.; Besenbacher, F. Supramolecular nanopatterns self-assembled by adenine-thymine quartets at the liquid/solid interface. J. Am. Chem. Soc. 2006, 128, 13305-13311.
[6]
Xu, S.; Dong, M.; Rauls, E.; Otero, R.; Linderoth, T. R.; Besenbacher, F. Coadsorption of guanine and cytosine on graphite: Ordered structure based on GC pairing. Nano Lett. 2006, 6, 1434-1438.
[7]
Mamdouh, W.; Kelly, R. E. A.; Dong, M. D.; Kantorovich, L. N.; Besenbacher, F. Two-dimensional supramolecular nanopatterns formed by the coadsorption of guanine and uracil at the liquid/solid interface. J. Am. Chem. Soc. 2008, 130, 695-702.
[8]
Otero, R.; Xu, W.; Lukas, M.; Kelly, R. E. A.; Laegsgaard, E.; Stensgaard, I.; Kjems, J.; Kantorovich, L. N.; Besenbacher, F. Specificity of Watson-Crick base pairing on a solid surface studied at the atomic scale. Angew. Chem., Int. Ed. 2008, 47, 9673-9676.
[9]
Xu, W.; Wang, J. G.; Jacobsen, M. F.; Mura, M.; Yu, M.; Kelly, R. E. A.; Meng, Q. Q.; Laegsgaard, E.;Stensgaard, I.; Linderoth, T. R. et al. Supramolecular porous network formed by molecular recognition between chemically modified nucleobases guanine and cytosine. Angew. Chem., Int. Ed. 2010, 49, 9373-9377.
[10]
Chen, C.; Sang, H. Q.; Ding, P. C.; Sun, Y.; Mura, M.; Hu, Y.; Kantorovich, L. N.; Besenbacher, F.; Yu, M. Xanthine quartets on Au(111). J. Am. Chem. Soc. 2018, 140, 54-57.
[11]
Mason, S. Biomolecular homochirality. Chem. Soc. Rev. 1988, 17, 347-359.
[12]
Kahr, B.; Freudenthal, J. H. Dendritic crystal growth, differential circular scattering, and the origin of biomolecular homochirality. Chirality 2008, 20, 973-977.
[13]
Chen, C.; Ding, P. C.; Mura, M.; Chen, Y. H.; Sun, Y.; Kantorovich, L. N.; Gersen, H.; Besenbacher, F.; Yu, M. Formation of hypoxanthine tetrad by reaction with sodium chloride: From planar to stereo. Angew. Chem., Int. Ed. 2018, 57, 16015-16019.
[14]
Rhodes, D.; Lipps, H. J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015, 43, 8627-8637.
[15]
Hänsel-Hertsch, R.; Di Antonio, M.; Balasubramanian, S. DNA G-quadruplexes in the human genome: Detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 2017, 18, 279-284.
[16]
Maiti, S.; Saha, P.; Das, T.; Bessi, I.; Schwalbe, H.; Dash, J. Human telomeric G-quadruplex selective fluoro-isoquinolines induce apoptosis in cancer cells. Bioconjugate Chem. 2018, 29, 1141-1154.
[17]
Szolomájer, J.; Paragi, G.; Batta, G.; Guerra, C. F.; Bickelhaupt, F. M.; Kele, Z.; Pádár, P.; Kupihár, Z.; Kovács, L. 3-Substituted xanthines as promising candidates for quadruplex formation: Computational, synthetic and analytical studies. New J. Chem. 2011, 35, 476-482.
[18]
Mezzache, S.; Alves, S.; Paumard, J. P.; Pepe, C.; Tabet, J. C. Theoretical and gas-phase studies of specific cationized purine base quartet. Rapid Commun. Mass Spectrom. 2007, 21, 1075-1082.
[19]
Ogasawara, H.; Imaida, K.; Ishiwata, H.; Toyoda, K.; Kawanishi, T.; Uneyama, C.; Hayashi, S.; Takahashi, M.; Hayashi, Y. Urinary bladder carcinogenesis induced by melamine in F344 male rats: Correlation between carcinogenicity and urolith formation. Carcinogenesis 1995, 16, 2773-2777.
[20]
Hau, A. K.; Kwan, T. H.; Li, P. K. T. Melamine toxicity and the kidney. J. Am. Soc. Nephrol. 2009, 20, 245-250.
[21]
Messler, M. V.; Cremonezzi, D.; Soria, E. A.; Eynard, A. R. Nutritional chemoprevention of urinary tract tumors (UTT) induced by lithogenic agents: Risk for UTT in children exposed to melamine-contaminated milk formulas. J. Environ. Sci. Health, Part C 2012, 30, 174-187.
[22]
Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 2002, 14, 2717-2744.
[23]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[24]
Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892-7895.
[25]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[26]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[27]
Balasubramanian, S.; Hurley, L. H.; Neidle, S. Targeting G-quadruplexes in gene promoters: A novel anticancer strategy? Nat. Rev. Drug Discov. 2011, 10, 261-275.
[28]
Bochman, M. L.; Paeschke, K.; Zakian, V. A. DNA secondary structures: Stability and function of G-quadruplex structures. Nat. Rev. Genet. 2012, 13, 770-780.
[29]
Skomski, D.; Abb, S.; Tait, S. L. Robust surface nano-architecture by alkali-carboxylate ionic bonding. ‎J. Am. Chem. Soc. 2012, 134, 14165-14171.
[30]
Wäckerlin, C.; Iacovita, C.; Chylarecka, D.; Fesser, P.; Jung, T. A.; Ballav, N. Assembly of 2D ionic layers by reaction of alkali halides with the organic electrophile 7,7,8,8-tetracyano-p-quinodimethane (TCNQ). Chem. Commun. 2011, 47, 9146-9148.
[31]
Silly, F.; Shaw, A. Q.; Castell, M. R.; Briggs, G. A. D.; Mura, M.; Martsinovich, N.; Kantorovich, L. Melamine structures on the Au (111) surface. J. Phys. Chem. C 2008, 112, 11476-11480.
File
12274_2020_2869_MOESM1_ESM.pdf (939.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 January 2020
Revised: 04 May 2020
Accepted: 10 May 2020
Published: 08 June 2020
Issue date: September 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21473045 and 51772066) and State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. 2018DX04).

Return