Journal Home > Volume 14 , Issue 6

Graphene (Gr)/Si-based optoelectronic devices have attracted a lot of academic attention due to the simpler fabrication processes, low costs, and higher performance of their two-dimensional (2D)/three-dimensional (3D) hybrid interfaces in Schottky junction that promotes electron-hole separation. However, due to the built-in potential of Gr/Si as a photodetector, the Iph/Idark ratio is often hindered near zero-bias at relatively low illumination intensity. This is a major drawback in self-powered photodetectors. In this study, we have demonstrated a self-powered van der Waals heterostructure photodetector in the visible range using a Gr/hexagonal boron nitride (h-BN)/Si structure and clarified that the thin h-BN insertion can engineer asymmetric carrier transport and avoid interlayer coupling at the interface. The dark current was able to be suppressed by inserting an h-BN insulator layer, while maintaining the photocurrent with minimal decrease at near zero-bias. As a result, the normalized photocurrent-to-dark ratio (NPDR) is improved more than 104 times. Also, both Iph/Idark ratio and detectivity, increase by more than 104 times at -0.03 V drain voltage. The proposed Gr/h-BN/Si heterostructure is able to contribute to the introduction of next-generation photodetectors and photovoltaic devices based on graphene or silicon.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Efficient photovoltaic effect in graphene/h-BN/silicon heterostructure self-powered photodetector

Show Author's information Ui Yeon Won1Boo Heung Lee1Young Rae Kim1,2Won Tae Kang1,2Ilmin Lee1Ji Eun Kim1Young Hee Lee2Woo Jong Yu1( )
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea

Abstract

Graphene (Gr)/Si-based optoelectronic devices have attracted a lot of academic attention due to the simpler fabrication processes, low costs, and higher performance of their two-dimensional (2D)/three-dimensional (3D) hybrid interfaces in Schottky junction that promotes electron-hole separation. However, due to the built-in potential of Gr/Si as a photodetector, the Iph/Idark ratio is often hindered near zero-bias at relatively low illumination intensity. This is a major drawback in self-powered photodetectors. In this study, we have demonstrated a self-powered van der Waals heterostructure photodetector in the visible range using a Gr/hexagonal boron nitride (h-BN)/Si structure and clarified that the thin h-BN insertion can engineer asymmetric carrier transport and avoid interlayer coupling at the interface. The dark current was able to be suppressed by inserting an h-BN insulator layer, while maintaining the photocurrent with minimal decrease at near zero-bias. As a result, the normalized photocurrent-to-dark ratio (NPDR) is improved more than 104 times. Also, both Iph/Idark ratio and detectivity, increase by more than 104 times at -0.03 V drain voltage. The proposed Gr/h-BN/Si heterostructure is able to contribute to the introduction of next-generation photodetectors and photovoltaic devices based on graphene or silicon.

Keywords: graphene, hexagonal boron nitride, self-powered, van der Waals heterostructure

References(43)

[1]
A. K. Geim,; I. V. Grigorieva, Van der waals heterostructures. Nature 2013, 499, 419-425.
[2]
T. Mueller,; F. N. Xia,; P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297-301.
[3]
Y. Kubota,; K. Watanabe,; O. Tsuda,; T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932-934.
[4]
W. J. Yu,; Z. Li,; H. L. Zhou,; Y. Chen,; Y. Wang,; Y. Huang,; X. F. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 2013, 12, 246-252.
[5]
W. J. Yu,; Y. Liu,; H. L. Zhou,; A. X. Yin,; Z. Li,; Y. Huang,; X. F. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952-958.
[6]
J. G. Wang,; F. C. Ma,; M. T. Sun, Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Adv. 2017, 7, 16801-16822.
[7]
T. Yu,; F. Wang,; Y. Xu,; L. L. Ma,; X. D. Pi,; D. R. Yang, Graphene coupled with silicon quantum dots for high-performance bulk- silicon-based Schottky-junction photodetectors. Adv. Mater. 2016, 28, 4912-4919.
[8]
P. Lv,; X. J. Zhang,; X. W. Zhang,; W. Deng,; J. S. Jie, High-sensitivity and fast-response graphene/crystalline silicon Schottky junction- based near-IR photodetectors. IEEE Electron Device Lett. 2013, 34, 1337-1339.
[9]
X. M. Li,; H. W. Zhu,; K. L. Wang,; A. Y. Cao,; J. Q. Wei,; C. Y. Li,; Y. Jia,; Z. Li,; X. Li,; D. H. Wu, Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 2010, 22, 2743-2748.
[10]
X. C. Miao,; S. Tongay,; M. K. Petterson,; K. Berke,; A. G. Rinzler,; B. R. Appleton,; A. F. Hebard, High efficiency graphene solar cells by chemical doping. Nano Lett. 2012, 12, 2745-2750.
[11]
H. Y. Kim,; K. Lee,; N. McEvoy,; C. Yim,; G. S. Duesberg, Chemically modulated graphene diodes. Nano Lett. 2013, 13, 2182-2188.
[12]
E. Z. Shi,; H. B. Li,; L. Yang,; L. H. Zhang,; Z. H. Li,; P. X. Li,; Y. Y. Shang,; S. T. Wu,; X. M. Li,; J. Q. Wei, et al. Colloidal antireflection coating improves graphene-silicon solar cells. Nano Lett. 2013, 13, 1776-1781.
[13]
Y. Song,; X. M. Li,; C. Mackin,; X. Zhang,; W. J. Fang,; T. Palacios,; H. W. Zhu,; J. Kong, Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. Nano Lett. 2015, 15, 2104-2110.
[14]
K. J. Jiao,; X. L. Wang,; Y. Wang,; Y. F. Chen, Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance. J. Mater. Chem. C 2014, 2, 7715-7721.
[15]
X. M. Li,; M. Zhu,; M. D. Du,; Z. Lv,; L. Zhang,; Y. C. Li,; Y. Yang,; T. T. Yang,; X. Li,; K. L. Wang, et al. High detectivity graphene- silicon heterojunction photodetector. Small 2016, 12, 595-601.
[16]
L. B. Luo,; L. H. Zeng,; C. Xie,; Y. Q. Yu,; F. X. Liang,; C. Y. Wu,; L. Wang,; J. G. Hu, Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci. Rep. 2015, 4, 3914.
[17]
D. Periyanagounder,; P. Gnanasekar,; P. Varadhan,; J. H. He,; J. Kulandaivel, High performance, self-powered photodetectors based on a graphene/silicon Schottky junction diode. J. Mater. Chem. C 2018, 6, 9545-9551.
[18]
C. H. Ji,; K. T. Kim,; S. Y. Oh, High-detectivity perovskite-based photodetector using a Zr-doped TiOx cathode interlayer. RSC Adv. 2018, 8, 8302-8309.
[19]
A. Di Bartolomeo,; G. Luongo,; F. Giubileo,; N. Funicello,; G. Niu,; T. Schroeder,; M. Lisker,; G. Lupina, Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect. 2D Mater. 2017, 4, 025075.
[20]
S. Riazimehr,; A. Bablich,; D. Schneider,; S. Kataria,; V. Passi,; C. Yim,; G. S. Duesberg,; M. C. Lemme, Spectral sensitivity of graphene/silicon heterojunction photodetectors. Solid-State Electron. 2016, 115, 207-212.
[21]
S. Riazimehr,; S. Kataria,; R. Bornemann,; P. H. Bolívar,; F. J. G. Ruiz,; O. Engström,; A. Godoy,; M. C. Lemme, High photocurrent in gated graphene-silicon hybrid photodiodes. ACS Photonics 2017, 4, 1506-1514.
[22]
C. X. Wang,; Y. Dong,; Z. J. Lu,; S. R. Chen,; K. W. Xu,; Y. M. Ma,; G. B. Xu,; X. Y. Zhao,; Y. Q. Yu, High responsivity and high-speed 1.55 μm infrared photodetector from self-powered graphene/Si heterojunction. Sens. Actuators, A: Phys. 2019, 291, 87-92.
[23]
C. C. Chen,; M. Aykol,; C. C. Chang,; A. F. J. Levi,; S. B. Cronin, Graphene-silicon Schottky diodes. Nano Lett. 2011, 11, 1863-1867.
[24]
K. K. Ng,; H. C. Card, Asymmetry in the SiO2 tunneling barriers to electrons and holes. J. Appl. Phys. 1980, 51, 2153-2157.
[25]
D. Sinha,; J. U. Lee, Ideal graphene/silicon Schottky junction diodes. Nano Lett. 2014, 14, 4660-4664.
[26]
M. A. Green,; M. J. Keevers, Optical properties of intrinsic silicon at 300 K. Prog. Photovoltaics Res. Appl. 1995, 3, 189-192.
[27]
X. J. Song,; T. Gao,; Y. F. Nie,; J. N. Zhuang,; J. Y. Sun,; D. L. Ma,; J. P. Shi,; Y. W. Lin,; F. Ding,; Y. F. Zhang, et al. Seed-assisted growth of single-crystalline patterned graphene domains on hexagonal boron nitride by chemical vapor deposition. Nano Lett. 2016, 16, 6109-6116.
[28]
X. Q. Li,; S. S. Lin,; X. Lin,; Z. J. Xu,; P. Wang,; S. J. Zhang,; H. K. Zhong,; W. L. Xu,; Z. Q. Wu,; W. Fang, Graphene/h-BN/GaAs Sandwich Diode as Solar Cell and Photodetector. Opt. Express 2016, 24, 134-145.
[29]
J. H. Meng,; X. Liu,; X. W. Zhang,; Y. Zhang,; H. L. Wang,; Z. G. Yin,; Y. Z. Zhang,; H. Liu,; J. B. You,; H. Yan, Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy 2016, 28, 44-50.
[30]
M. J. Powers,; M. C. Benjamin,; L. M. Porter,; R. J. Nemanich,; R. F. Davis,; J. J. Cuomo,; G. L. Doll,; S. J. Harris, Observation of a negative electron affinity for boron nitride. Appl. Phys. Lett. 1995, 67, 3912-3914.
[31]
K. P. Loh,; I. Sakaguchi,; M. N. Gamo,; S. Tagawa,; T. Sugino,; T. Ando, Surface conditioning of chemical vapor deposited hexagonal boron nitride film for negative electron affinity. Appl. Phys. Lett. 1999, 74, 28-30.
[32]
T. Yamada,; T. Masuzawa,; T. Ebisudani,; K. Okano,; T. Taniguchi, Field emission characteristics from graphene on hexagonal boron nitride. Appl. Phys. Lett. 2014, 104, 221603.
[33]
Q. A. Vu,; J. H. Lee,; V. L. Nguyen,; Y. S. Shin,; S. C. Lim,; K. Lee,; J. Heo,; S. Park,; K. Kim,; Y. H. Lee, et al. Tuning carrier tunneling in van der waals heterostructures for ultrahigh detectivity. Nano Lett. 2017, 17, 453-459.
[34]
H. Li,; X. M. Li,; J. H. Park,; L. Tao,; K. K. Kim,; Y. H. Lee,; J. B. Bin. Xu, Restoring the photovoltaic effect in graphene-based van der waals heterojunctions towards self-powered high-detectivity photodetectors. Nano Energy 2019, 57, 214-221.
[35]
W. C. Lee,; M. L. Tsai,; Y. L. Chen,; W. C. Tu, Fabrication and analysis of chemically-derived graphene/pyramidal Si heterojunction solar cells. Sci. Rep. 2017, 7, 46478.
[36]
Y. Liu,; S. H. Sun,; J. Xu,; L. Zhao,; H. C. Sun,; J. Li,; W. W. Mu,; L. Xu,; K. J. Chen, Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells. Opt. Express 2011, 19, A1051-A1056.
[37]
K. Huang,; Y. C. Yan,; K. Li,; A. Khan,; H. Zhang,; X. D. Pi,; X. G. Yu,; D. R. Yang, High and fast response of a graphene-silicon photodetector coupled with 2D fractal platinum nanoparticles. Adv. Opt. Mater. 2018, 6, 1700793.
[38]
Y. B. An,; A. Behnam,; E. Pop,; G. Bosman,; A. Ural, Forward-bias diode parameters, electronic noise, and photoresponse of graphene/ silicon Schottky junctions with an interfacial native oxide layer. J. Appl. Phys. 2015, 118, 114307.
[39]
S. Riazimehr,; S. Kataria,; J. M. Gonzalez-Medina,; S. Wagner,; M. Shaygan,; S. Suckow,; F. G. Ruiz,; O. Engström,; A. Godoy,; M. C. Lemme, High responsivity and quantum efficiency of graphene/ silicon photodiodes achieved by interdigitating Schottky and gated regions. ACS Photonics 2019, 6, 107-115.
[40]
X. D. An,; F. Z. Liu,; Y. J. Jung,; S. Kar, Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909-916.
[41]
X. M. Wang,; Z. Z. Cheng,; K. Xu,; H. K. Tsang,; J. B. Xu, High- responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888-891.
[42]
X. Wan,; Y. Xu,; H. W. Guo,; K. Shehzad,; A. Ali,; Y. Liu,; J. Y. Yang,; D. X. Dai,; C. T. Lin,; L. W. Liu, et al. A self-powered high- performance graphene/silicon ultraviolet photodetector with ultra- shallow junction: Breaking the limit of silicon? npj 2D Mater. Appl. 2017, 1, 4.
[43]
D. Xiang,; C. Han,; Z. H. Hu,; B. Lei,; Y. Y. Liu,; L. Wang,; W. P. Hu,; W. Chen, Surface transfer doping-induced, high-performance graphene/silicon Schottky junction-based, self-powered photodetector. Small 2015, 11, 4829-4836.
File
12274_2020_2866_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 February 2020
Revised: 20 April 2020
Accepted: 09 May 2020
Published: 09 June 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1A2B2008069), R&D program of MOTIE/KEIT (No. 10064078), and Multi-Ministry Collaborative R&D Program through the National Research Foundation of Korea, funded by KNPA, MSIT, MOTIE, ME, and NFA (No. 2017M3D9A1073539). This work was supported under the framework of international cooperation program managed by the National Research Foundation of Korea (No. 2018K2A9A2A06017491). Y. H. L. acknowledges this work was supported from the Institute for Basic Science (No. IBS-R011-D1).

Return