Journal Home > Volume 13 , Issue 9

Electrocatalytic water splitting offers a sustainable route for hydrogen production, enabling the clean and renewable alternative energy system of hydrogen economy. The scarcity and high-cost of platinum-group-metal (PGM) materials urge the exploration of high-performance non-PGM electrocatalysts. Herein, a unique hierarchical structure of Ni/V2O3 with extraordinary electrocatalytic performance (e.g., overpotentials as low as 22 mV at 20 mA·cm-2 and 94 mV at 100 mA·cm-2) toward hydrogen evolution reaction in alkaline electrolyte (1 M KOH) is reported. The investigation on the hierarchical Ni/V2O3 with a bimodal size-distribution also offers insight of interfacial engineering that only proper Ni/V2O3 interface can effectively improve H2O adsorption, H2O dissociation as well as H adsorption, for an efficient hydrogen production.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction

Show Author's information Yang Chen1,§Yuan Rao1,§Rongzhi Wang1Yanan Yu1Qiulin Li2Shujuan Bao2Maowen Xu2Qin Yue1Yanning Zhang1( )Yijin Kang1( )
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China

§ Yang Chen and Yuan Rao contributed equally to this work.

Abstract

Electrocatalytic water splitting offers a sustainable route for hydrogen production, enabling the clean and renewable alternative energy system of hydrogen economy. The scarcity and high-cost of platinum-group-metal (PGM) materials urge the exploration of high-performance non-PGM electrocatalysts. Herein, a unique hierarchical structure of Ni/V2O3 with extraordinary electrocatalytic performance (e.g., overpotentials as low as 22 mV at 20 mA·cm-2 and 94 mV at 100 mA·cm-2) toward hydrogen evolution reaction in alkaline electrolyte (1 M KOH) is reported. The investigation on the hierarchical Ni/V2O3 with a bimodal size-distribution also offers insight of interfacial engineering that only proper Ni/V2O3 interface can effectively improve H2O adsorption, H2O dissociation as well as H adsorption, for an efficient hydrogen production.

Keywords: interface, electrocatalysis, hydrogen evolution reaction, vanadium oxide, hierarchical materials

References(54)

[1]
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
[2]
Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.
[3]
Wang, L.; Zhu, Y. H.; Zeng, Z. H.; Lin, C.; Giroux, M.; Jiang, L.; Han, Y.; Greeley, J.; Wang, C.; Jin, J. Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy 2017, 31, 456-461.
[4]
Huang, Y.; Gong, Q. F.; Song, X. N.; Feng, K.; Nie, K. Q.; Zhao, F. P.; Wang, Y. Y.; Zeng, M.; Zhong, J.; Li, Y. G. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 2016, 10, 11337-11343.
[5]
Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550-557.
[6]
Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256-1260.
[7]
Weng, Z.; Liu, W.; Yin, L. C.; Fang, R. P.; Li, M.; Altman, E. I.; Fan, Q.; Li, F.; Cheng, H. M.; Wang, H. L. Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett. 2015, 15, 7704-7710.
[8]
Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28-46.
[9]
Zeng, M.; Li, Y. G. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 14942-14962.
[10]
Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076-5080.
[11]
Qu, Y. J.; Yang, M. Y.; Chai, J. W.; Tang, Z.; Shao, M. M.; Kwok, C. T.; Yang, M.; Wang, Z. Y.; Chua, D.; Wang, S. J. et al. Facile synthesis of vanadium-doped Ni3S2 nanowire arrays as active electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 5959-5967.
[12]
Ming, M.; Ma, Y. L.; Zhang, Y.; Huang, L. B.; Zhao, L.; Chen, Y. Y.; Zhang, X.; Fan, G. Y.; Hu, J. S. 3D nanoporous Ni/V2O3 hybrid nanoplate assemblies for highly efficient electrochemical hydrogen evolution. J. Mater. Chem. A 2018, 6, 21452-21457.
[13]
Ji, D.; Peng, L. S.; Shen, J. J.; Deng, M. M.; Mao, Z. X.; Tan, L. Q.; Wang, M. J.; Xiang, R.; Wang, J.; Shah, S. S. A. Inert V2O3 oxide promotes the electrocatalytic activity of Ni metal for alkaline hydrogen evolution. Chem. Commun. 2019, 55, 3290-3293.
[14]
Wu, C. H.; Liu, C.; Su, D.; Xin, H. L.; Fang, H. T.; Eren, B.; Zhang, S.; Murray, C. B.; Salmeron, M. B. Bimetallic synergy in cobalt-palladium nanocatalysts for CO oxidation. Nat. Catal. 2019, 2, 78-85.
[15]
Liu, C.; Ma, Z.; Cui, M. Y.; Zhang, Z. Y.; Zhang, X.; Su, D.; Murray, C. B.; Wang, J. X.; Zhang, S. Favorable core/shell interface within Co2P/Pt nanorods for oxygen reduction electrocatalysis. Nano Lett. 2018, 18, 7870-7875.
[16]
Kang, Y. J.; Yang, P. D.; Markovic, N. M.; Stamenkovic, V. R. Shaping electrocatalysis through tailored nanomaterials. Nano Today 2016, 11, 587-600.
[17]
Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.
[18]
Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-9.
[19]
Liao, H. B.; Fisher, A.; Xu, Z. J. Surface segregation in bimetallic nanoparticles: A critical issue in electrocatalyst engineering. Small 2015, 11, 3221-3246.
[20]
Wang, Y. Q.; Zou, Y. Q.; Tao, L.; Wang, Y. Y.; Huang, G.; Du, S. Q.; Wang, S. Y. Rational design of three-phase interfaces for electrocatalysis. Nano Res. 2019, 12, 2055-2066.
[21]
Xu, H.; Chu, W.; Sun, W. J.; Jiang, C. F.; Liu, Z. Q. DFT studies of Ni cluster on graphene surface: Effect of CO2 activation. RSC Adv. 2016, 6, 96545-96553.
[22]
Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T. Jr. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011, 333, 736-739.
[23]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[24]
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59(3), 1758-1775.
[25]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[26]
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
[27]
Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.
[28]
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-9904.
[29]
Yu, J. Y.; Zhou, W. J.; Xiong, T. L.; Wang, A. L.; Chen, S. W.; Chu, B. L. Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction. Nano Res. 2017, 10, 2599-2609.
[30]
Yao, Q. L.; Lu, Z. H.; Yang, Y. W.; Chen, Y. Z.; Chen, X. S.; Jiang, H. L. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Nano Res. 2018, 11, 4412-4422.
[31]
Shi, H. H.; Liang, H. F.; Ming, F. W.; Wang, Z. C. Efficient overall water-splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres. Angew. Chem., Int. Ed. 2017, 56, 573-577.
[32]
Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y. et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981.
[33]
An, L.; Zhang, Z. Y.; Feng, J. R.; Lv, F.; Li, Y. X.; Wang, R.; Lu, M.; Gupta, R. B.; Xi, P. X.; Zhang, S. Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte. J. Am. Chem. Soc. 2018, 140, 17624-17631.
[34]
Ou, G.; Xu, Y. S.; Wen, B.; Lin, R.; Ge, B. H.; Tang, Y.; Liang, Y. W.; Yang, C.; Huang, K.; Zu, D. et al. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 2018, 9, 1302.
[35]
Bao, K. Y.; Mao, W. T.; Liu, G. Y.; Ye, L. Q.; Xie, H. Q.; Ji, S. F.; Wang, D. S.; Chen, C.; Li, Y. D. Preparation and electrochemical characterization of ultrathin WO3-x /C nanosheets as anode materials in lithium ion batteries. Nano Res. 2017, 10, 1903-1911.
[36]
Wu, H.; Lu, X.; Zheng, G. F.; Ho, G. W. Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis. Adv. Energy Mater. 2018, 8, 1702704.
[37]
Vitos, L.; Ruban, A. V.; Skriver, H. L.; Kollár, J. The surface energy of metals. Surf. Sci. 1998, 411, 186-202.
[38]
Ji, C. C.; Bi, J. L.; Wang, S.; Zhang, X. J.; Yang, S. C. Ni nanoparticle doped porous VN nanoflakes assembled into hierarchical hollow microspheres with a structural inheritance from the Ni1-xVxO2 cathode material for high performance asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 2158-2168.
[39]
Xiao, Y. L.; Tian, C. G.; Tian, M.; Wu, A. P.; Yan, H. J.; Chen, C. F.; Wang, L.; Jiao, Y. Q.; Fu, H. G. Cobalt-vanadium bimetal-based nanoplates for efficient overall water splitting. Sci. China Mater. 2018, 61, 80-90.
[40]
Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Paul Alivisatos, A. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science 2004, 304, 711-714.
[41]
González, E.; Arbiol, J.; Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and kirkendall growth at room temperature. Science 2011, 334, 1377-1380.
[42]
Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA 2018, 115, 12692-12697.
[43]
Liao, L.; Wang, S. N.; Xiao, J. J.; Bian, X. J.; Zhang, Y. H.; Scanlon, M. D.; Hu, X. L.; Tang, Y.; Liu, B. H.; Girault, H. H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 387-392.
[44]
Wang, S. Y.; Zhang, L.; Li, X.; Li, C. L.; Zhang, R. J.; Zhang, Y. J.; Zhu, H. W. Sponge-like nickel phosphide-carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Res. 2017, 10, 415-425.
[45]
Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013, 341, 771-773.
[46]
Kang, Y. J.; Ye, X. C.; Chen, J.; Qi, L.; Diaz, R. E.; Doan-Nguyen, V.; Xing, G. Z.; Kagan, C. R.; Li, J.; Gorte, R. J. et al. Engineering catalytic contacts and thermal stability: Gold/iron oxide binary nanocrystal superlattices for CO oxidation. J. Am. Chem. Soc. 2013, 135, 1499-1505.
[47]
Zheng, J.; Sheng, W. C.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2016, 2, e1501602.
[48]
Intikhab, S.; Rebollar, L.; Fu, X. B.; Yue, Q.; Li, Y. W.; Kang, Y. J.; Tang, M. H.; Snyder, J. D. Exploiting dynamic water structure and structural sensitivity for nanoscale electrocatalyst design. Nano Energy 2019, 64, 103963.
[49]
Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem., Int. Ed. 2012, 51, 12495-12498.
[50]
Lin, H. L.; Shi, Z. P.; He, S. N.; Yu, X.; Wang, S. N.; Gao, Q. S.; Tang, Y. Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 2016, 7, 3399-3405.
[51]
Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23-J26.
[52]
Wang, P. T.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S. J.; Lu, G.; Yao, J. L.; Huang, X. Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 2017, 8, 14580.
[53]
Chen, S. C.; Kang, Z. X.; Hu, X.; Zhang, X. D.; Wang, H.; Xie, J. F.; Zheng, X. S.; Yan, W. S.; Pan, B. C.; Xie, Y. Delocalized spin states in 2D atomic layers realizing enhanced electrocatalytic oxygen evolution. Adv. Mater. 2017, 29, 1701687.
[54]
Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411-419.
File
12274_2020_2865_MOESM1_ESM.pdf (9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 April 2020
Revised: 04 May 2020
Accepted: 08 May 2020
Published: 17 June 2020
Issue date: September 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 11874005, 21701153, 51601030 and 21773023).

Return