Journal Home > Volume 13 , Issue 9

Controllably and efficaciously localized CRISPR/Cas9 plasmids transfection plays an essential role in genetic editing associated with various key human diseases. We employed near-infrared (NIR) light-responsive CRISPR/Cas9 plasmids delivery via a charge-reversal nanovector to achieve highly efficient and site-specific gene editing. The nanovector with abundant positive charges was fabricated on the basis of an ultraviolet-sensitive conjugated polyelectrolyte coated on an upconversion nanomaterial (UCNP-UVP-P), which can convert into negative charges upon 980 nm light irradiation. Using the as-prepared nanovector, we demonstrated the plasmids could be efficiently transfected into tumor cells (~ 63% ± 4%) in a time-controlled manner, and that functional CRISPR/Cas9 proteins could be successfully expressed in a selected NIR-irradiated region. Particularly, this strategy was successfully applied to the delivery of CRISPR/Cas9 gene to tumor cells in vivo, inducing high efficiency editing of the target gene PLK-1 under photoirradiation. Therefore, this precisely controlled gene regulation strategy has the potential to serve as a new paradigm for gene engineering in complex biological systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Light-responsive charge-reversal nanovector for high-efficiency in vivo CRISPR/Cas9 gene editing with controllable location and time

Show Author's information Yunxia Wu1,2Judun Zheng1,2Qin Zeng1,2Tao Zhang1,2( )Da Xing1,2( )
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China

Abstract

Controllably and efficaciously localized CRISPR/Cas9 plasmids transfection plays an essential role in genetic editing associated with various key human diseases. We employed near-infrared (NIR) light-responsive CRISPR/Cas9 plasmids delivery via a charge-reversal nanovector to achieve highly efficient and site-specific gene editing. The nanovector with abundant positive charges was fabricated on the basis of an ultraviolet-sensitive conjugated polyelectrolyte coated on an upconversion nanomaterial (UCNP-UVP-P), which can convert into negative charges upon 980 nm light irradiation. Using the as-prepared nanovector, we demonstrated the plasmids could be efficiently transfected into tumor cells (~ 63% ± 4%) in a time-controlled manner, and that functional CRISPR/Cas9 proteins could be successfully expressed in a selected NIR-irradiated region. Particularly, this strategy was successfully applied to the delivery of CRISPR/Cas9 gene to tumor cells in vivo, inducing high efficiency editing of the target gene PLK-1 under photoirradiation. Therefore, this precisely controlled gene regulation strategy has the potential to serve as a new paradigm for gene engineering in complex biological systems.

Keywords: gene editing, light-responsive, charge-reversal, CRISPR/Cas9

References(56)

[1]
Barrangou, R.; Doudna, J. A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 2016, 34, 933-941.
[2]
Long, C. Z.; McAnally, J. R.; Shelton, J. M.; Mireault, A. A.; Bassel-Duby, R.; Olson, E. N. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 2014, 345, 1184-1188.
[3]
Wang, H. X.; Li, M. Q.; Lee, C. M.; Chakraborty, S.;Kim, H. W.; Bao, G.; Leong, K. W. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chem. Rev. 2017, 117, 9874-9906.
[4]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816-821.
[5]
Sánchez-Rivera, F. J.; Jacks, T. Applications of the CRISPR-Cas9 system in cancer biology. Nat. Rev. Cancer 2015, 15, 387-395.
[6]
Swiech, L.; Heidenreich, M.; Banerjee, A.; Habib, N.; Li, Y. Q.; Trombetta, J.;Sur, M.; Zhang, F. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 2015, 33, 102-106.
[7]
Hsu, P. D.; Lander, E. S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157, 1262-1278.
[8]
Kiani, S.; Chavez, A.; Tuttle, M.; Hall, R. N.; Chari, R.; Ter-Ovanesyan, D.; Qian, J.; Pruitt, B. W.; Beal, J.; Vora, S. et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat. Methods 2015, 12, 1051-1054.
[9]
Platt, R. J.; Chen, S. D.; Zhou, Y.; Yim, M. J.; Swiech, L.; Kempton, H. R.; Dahlman, J. E.; Parnas, O.; Eisenhaure, T. M.; Jovanovic, M. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014, 159, 440-455.
[10]
Xue, W.; Chen, S. D.; Yin, H.; Tammela, T.; Papagiannakopoulos, T.; Joshi, N. S.; Cai, W. X.; Yang, G.; Bronson, R.; Crowley, D. G. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014, 514, 380-384.
[11]
Liang, X. Q.; Potter, J.; Kumar, S.; Zou, Y. F.; Quintanilla, R.; Sridharan, M.; Carte, J.; Chen, W.; Roark, N.; Ranganathan, S. et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 2015, 208, 44-53.
[12]
Horwitz, A. A.; Walter, J. M.; Schubert, M. G.; Kung, S. H.; Hawkins, K.; Platt, D. M.; Hernday, A. D.; Mahatdejkul-Meadows, T.; Szeto, W.; Chandran, S. S. et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 2015, 1, 88-96.
[13]
Svitashev, S.; Young, J. K.; Schwartz, C.; Gao, H. R.; Falco, S. C.; Cigan, A. M. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 2015, 169, 931-945.
[14]
Chu, V. T.; Weber, T.; Wefers, B.; Wurst, W.; Sander, S.; Rajewsky, K.; Kühn, R. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 2015, 33, 543-548.
[15]
Garneau, J. E.; Dupuis, M. È.; Villion, M.; Romero, D. A.; Barrangou, R.; Boyaval, P.; Fremaux, C.; Horvath, P.; Magadán, A. H.; Moineau, S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010, 468, 67-71.
[16]
Liu, Q.; Zhao, K.; Wang, C.; Zhang, Z. Z.; Zheng, C. X.; Zhao, Y.; Zheng, Y. D.; Liu, C. Y.; An, Y. L.; Shi, L. Q. et al. Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo. Adv. Sci. 2019, 6, 1801423.
[17]
Wang, P.; Zhang, L. M.; Zheng, W. F.; Cong, L. M.; Guo, Z. R.; Xie, Y. Z. Y.; Wang, L.; Tang, R. B.; Feng, Q.; Hamada, Y. et al. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. Angew. Chem., Int. Ed. 2018, 57, 1491-1496.
[18]
Yin, H.; Song, C. Q.; Dorkin, J. R.; Zhu, L. J.; Li, Y. X.; Wu, Q. Q.; Park, A.; Yang, J.; Suresh, S.; Bizhanova, A. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 2016, 34, 328-333.
[19]
He, Z. Y.; Men, K.; Qin, Z.; Yang, Y.; Xu, T.; Wei, Y. Q. Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field. Sci. China Life Sci. 2017, 60, 458-467.
[20]
Luten, J.; Van Nostrum, C. F.; De Smedt, S. C.; Hennink, W. E. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J. Control. Release 2008, 126, 97-110.
[21]
Wang, H. X.; Song, Z. Y.; Lao, Y. H.; Xu, X.; Gong, J.; Cheng, D.; Chakraborty, S.; Park, J. S.; Li, M. Q.; Huang, D. T. et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc. Natl. Acad. Sci. USA 2018, 115, 4903-4908.
[22]
Wang, P.; Zhang, L. M.; Xie, Y. Z. Y.; Wang, N. X.; Tang, R. B.; Zheng, W. F.; Jiang, X. Y. Genome editing for cancer therapy: Delivery of Cas9 protein/sgRNA plasmid via a gold nanocluster/lipid core-shell nanocarrier. Adv. Sci. 2017, 4, 1700175.
[23]
Yu, X.; Liang, X. Q.; Xie, H. M.; Kumar, S.; Ravinder, N.; Potter, J.; du Jeu, X. D. M.; Chesnut, J. D. Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. Biotechnol. Lett. 2016, 38, 919-929.
[24]
Zhang, L. M.; Wang, P.; Feng, Q.; Wang, N. X.; Chen, Z. T.; Huang, Y. Y.; Zheng, W. F.; Jiang, X. Y. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG Asia Materi. 2017, 9, e441.
[25]
Li, L.; Hu, S.; Chen, X. Y. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018, 171, 207-218.
[26]
Li, L.; He, Z. Y.; Wei, X. W.; Gao, G. P.; Wei, Y. Q. Challenges in CRISPR/CAS9 delivery: Potential roles of nonviral vectors. Hum. Gene Ther. 2015, 26, 452-462.
[27]
Sun, W. J.; Ji, W. Y.; Hall, J. M.; Hu, Q. Y.; Wang, C.; Beisel, C. L.; Gu, Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem., Int. Ed. 2015, 54, 12029-12033.
[28]
Wang, L. Y.; Li, F. F.; Dang, L.; Liang, C.; Wang, C.; He, B.; Liu, J.; Li, D. F.; Wu, X. H.; Xu, X. G. et al. In vivo delivery systems for therapeutic genome editing. Int. J. Mol. Sci. 2016, 17, 626.
[29]
Yan, H. J.; Oommen, O. P.; Yu, D.; Hilborn, J.; Qian, H.; Varghese, O. P. Chondroitin sulfate-coated DNA-nanoplexes enhance transfection efficiency by controlling plasmid release from endosomes: A new insight into modulating nonviral gene transfection. Adv. Funct. Mater. 2015, 25, 3907-3915.
[30]
Guo, X.; Huang, L. Recent advances in nonviral vectors for gene delivery. Acc. Chem. Res. 2012, 45, 971-979.
[31]
Zhou, M. X.; Huang, H.; Wang, D. Q.; Lu, H. R.; Chen, J.; Chai, Z. F.; Yao, S. Q.; Hu, Y. Light-triggered PEGylation/dePEGylation of the nanocarriers for enhanced tumor penetration. Nano Lett. 2019, 19, 3671-3675.
[32]
Zhao, H.; Hu, W. B.; Ma, H. H.; Jiang, R. C.; Tang, Y. F.; Ji, Y.; Lu, X. M.; Hou, B.; Deng, W. X.; Huang, W. et al. Photo-induced charge-variable conjugated polyelectrolyte brushes encapsulating upconversion nanoparticles for promoted siRNA release and collaborative photodynamic therapy under NIR light irradiation. Adv. Funct. Mater. 2017, 27, 1702592.
[33]
Cong, Y.; Ji, L.; Gao, Y. J.; Liu, F. H.; Cheng, D. B.; Hu, Z. Y.; Qiao, Z. Y.; Wang, H. Microenvironment-induced in situ self-assembly of polymer-peptide conjugates that attack solid tumors deeply. Angew. Chem., Int. Ed. 2019, 58, 4632-4637.
[34]
Pan, Y. C.; Yang, J. J.; Luan, X. W.; Liu, X. L.; Li, X. Q.; Yang, J.; Huang, T.;Sun, L.; Wang, Y. Z.; Lin, Y. H. et al. Near-infrared upconversion-activated CRISPR-Cas9 system: A remote-controlled gene editing platform. Sci. Adv. 2019, 5, eaav7199.
[35]
Xiong, Q. R.; Lim, Y.; Li, D.; Pu, K. Y.; Liang, L.; Duan, H. W. Photoactive nanocarriers for controlled delivery. Adv. Funct. Mater. 2020, 30, 1903896.
[36]
Pansare, V. J.; Hejazi, S.; Faenza, W. J.; Prud’homme, R. K. Review of long-wavelength optical and NIR imaging materials: Contrast agents, fluorophores, and multifunctional nano carriers. Chem. Mater. 2012, 24, 812-827.
[37]
Wang, C.; Cheng, L.; Liu, Y. M.; Wang, X. J.; Ma, X. X.; Deng, Z. Y.; Li, Y. G.; Liu, Z. Imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light. Adv. Funct. Mater. 2013, 23, 3077-3086.
[38]
Zhao, J.; Chu, H. Q.; Zhao, Y.; Lu, Y.; Li, L. L. A NIR light gated DNA nanodevice for spatiotemporally controlled imaging of MicroRNA in cells and animals. J. Am. Chem. Soc. 2019, 141, 7056-7062.
[39]
Li, L.; Yang, Z.; Zhu, S. J.; He, L. C.; Fan, W. P.; Tang, W.; Zou, J. H.; Shen, Z. Y.; Zhang, M. R.; Tang, L. G. et al. A rationally designed semiconducting polymer brush for NIR-II imaging-guided light-triggered remote control of CRISPR/Cas9 genome editing. Adv. Mater. 2019, 31, 1901187.
[40]
Lyu, Y.; He, S. S.; Li, J. C.; Jiang, Y. Y.; Sun, H.; Miao, Y. S.; Pu, K. Y. A photolabile semiconducting polymer nanotransducer for near-infrared regulation of CRISPR/Cas9 gene editing. Angew. Chem., Int. Ed. 2019, 58, 18197-18201.
[41]
Dobson, J. Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Ther. 2006, 13, 283-287.
[42]
Zhu, H. B.; Zhang, L. L.; Tong, S.; Lee, C. M.; Deshmukh, H.; Bao, G. Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets. Nat. Biomed. Eng. 2019, 3, 126-136.
[43]
Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161-5214.
[44]
Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 2015, 115, 10530-10574.
[45]
Liu, Y.; Chen, M.; Cao, T. Y.; Sun, Y.; Li, C. Y.; Liu, Q.; Yang, T. S.; Yao, L. M.; Feng, W.; Li, F. Y. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J. Am. Chem. Soc. 2013, 135, 9869-9876.
[46]
Li, Z. H.; Yuan, H.; Yuan, W.; Su, Q. Q.; Li, F. Y. Upconversion nanoprobes for biodetections. Coordin. Chem. Rev. 2018, 354, 155-168.
[47]
Wang, M.; Mi, C. C.; Wang, W. X.; Liu, C. H.; Wu, Y. F.; Xu, Z. R.; Mao, C. B.; Xu, S. K. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles. ACS Nano 2009, 3, 1580-1586.
[48]
Vetrone, F.; Naccache, R.; Zamarrón, A.; Juarranz De La Fuente, A.; Sanz-Rodríguez, F.; Martinez Maestro, L.; Martín Rodriguez, E.; Jaque, D.; García Solé, J.; Capobianco, J. A. Temperature sensing using fluorescent nanothermometers. ACS Nano 2010, 4, 3254-3258.
[49]
Zheng, J. D.; Wu, Y. X.; Xing, D.; Zhang, T. Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe. Nano Res. 2019, 12, 931-938.
[50]
Yang, Y. M.; Shao, Q.; Deng, R. R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. G. et al. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 3125-3129.
[51]
Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416-1448.
[52]
Peng, J. J.; Sun, Y.; Liu, Q.; Yang, Y.; Zhou, J.; Feng, W.; Zhang, X. Z.; Li, F. Y. Upconversion nanoparticles dramatically promote plant growth without toxicity. Nano Res. 2012, 5, 770-782.
[53]
Kang, H.; Rho, S.; Stiles, W. R.; Hu, S.; Baek, Y.; Hwang, D. W.; Kashiwagi, S.; Moon S. K.; Choi, H. S. Size-dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv. Healthcare Mater. 2020, 9, 1901223.
[54]
Mali, P.; Yang, L. H.; Esvelt, K. M.; Aach, J.; Guell, M.; DiCarlo, J. E.; Norville, J. E.; Church, G. M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823-826.
[55]
Ran, F. A.; Hsu, P. D.; Lin, C. Y.; Gootenberg, J. S.; Konermann, S.; Trevino, A. E.; Scott, D. A.; Inoue, A.; Matoba, S.; Zhang, Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013, 154, 1380-1389.
[56]
Spänkuch-Schmitt, B.; Bereiter-Hahn, J.; Kaufmann, M.; Strebhardt, K. Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptosis and spindle formation in human cancer cells. J. Natl. Cancer Inst. 2002, 94, 1863-1877.
File
12274_2020_2864_MOESM1_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 March 2020
Revised: 08 May 2020
Accepted: 08 May 2020
Published: 18 June 2020
Issue date: September 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 21771065 and 81630046); the Guangdong Special Support Program (No. 2017TQ04R138), the Natural Science Foundation of Guangdong (No. 2019A1515012021), the Science and Technology Planning Project of Guangdong (No. 2017A020215088), Pearl River Nova Program of Guangzhou (No. 201806010189).

Return