Journal Home > Volume 13 , Issue 9

Nitrogen fixation is a vital process for both nature and industry. Whereas the nitrogenase can reduce nitrogen in ambient environment in nature, the industrialized Haber-Bosch process is a high temperature and high-pressure process. Since the discovery of the first dinitrogen complex in 1965, many dinitrogen complexes are prepared in a homogeneous solution to mimic the nitrogenase enzyme in nature. However, studies of the heterogeneous process on surface are rarely addressed. Moreover, molecular scale characterization for such dinitrogen complex is lacking. Here, we present a simple model system to investigate, at the single-molecule level, the binding of dinitrogen on a surface confined iron phthalocyanine (FePc) monolayer through the combination of in-situ low-temperature scanning tunneling microscopy (LT-STM) and x-ray photoelectron spectroscopy (XPS) measurements. The iron center in FePc molecule deposited on Au(111) and highly oriented pyrolytic graphite (HOPG) surface can adsorb dinitrogen molecule at room temperature and low pressure. A comparative study reveals that the adsorption behaviors of FePc on these two different substrates are identical. Chemical bond is formed between the dinitrogen and the Fe atom in the FePc molecule, which greatly modifies the electronic structure of FePc. The bonding is reversible and can be manipulated by applying bias using a STM tip or by thermal annealing.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single-molecule imaging of dinitrogen molecule adsorption on individual iron phthalocyanine

Show Author's information Chengding Gu1Jia Lin Zhang1,2( )Jian Qiang Zhong3Qian Shen4Xiong Zhou5Kaidi Yuan6Shuo Sun2Xu Lian1Zhirui Ma1Wei Chen1,2,7,8( )
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
Department of Physics, National University of Singapore, Singapore 117542, Singapore
Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany
Institute of Advanced Materials, Nanjing Tech University, Nanjing 210009, China
BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
School of Physical Science and Technology, Shanghai Tech University, Shanghai 200031, China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China

Abstract

Nitrogen fixation is a vital process for both nature and industry. Whereas the nitrogenase can reduce nitrogen in ambient environment in nature, the industrialized Haber-Bosch process is a high temperature and high-pressure process. Since the discovery of the first dinitrogen complex in 1965, many dinitrogen complexes are prepared in a homogeneous solution to mimic the nitrogenase enzyme in nature. However, studies of the heterogeneous process on surface are rarely addressed. Moreover, molecular scale characterization for such dinitrogen complex is lacking. Here, we present a simple model system to investigate, at the single-molecule level, the binding of dinitrogen on a surface confined iron phthalocyanine (FePc) monolayer through the combination of in-situ low-temperature scanning tunneling microscopy (LT-STM) and x-ray photoelectron spectroscopy (XPS) measurements. The iron center in FePc molecule deposited on Au(111) and highly oriented pyrolytic graphite (HOPG) surface can adsorb dinitrogen molecule at room temperature and low pressure. A comparative study reveals that the adsorption behaviors of FePc on these two different substrates are identical. Chemical bond is formed between the dinitrogen and the Fe atom in the FePc molecule, which greatly modifies the electronic structure of FePc. The bonding is reversible and can be manipulated by applying bias using a STM tip or by thermal annealing.

Keywords: single-molecule, dinitrogen, iron phthalocyanine, axial coordination

References(63)

[1]
Avenier, P.; Taoufik, M.; Lesage, A.; Solans-Monfort, X.; Baudouin, A.; de Mallmann, A.; Veyre, L.; Basset, J. M.; Eisenstein, O.; Emsley, L. et al. Dinitrogen dissociation on an isolated surface tantalum atom. Science 2007, 317, 1056-1060.
[2]
Howard, J. B.; Rees, D. C. Structural basis of biological nitrogen fixation. Chem. Rev. 1996, 96, 2965-2982.
[3]
Rodriguez, M. M.; Bill, E.; Brennessel, W. W.; Holland, P. L. N2 reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science 2011, 334, 780-783.
[4]
Service, R. F. New recipe produces ammonia from air, water, and sunlight. Science 2014, 345, 610.
[5]
Bazhenova, T. A.; Shilov, A. E. Nitrogen fixation in solution. Coord. Chem. Rev. 1995, 144, 69-145.
[6]
Jia, H. P.; Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 2014, 43, 547-564.
[7]
Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”? Angew. Chem., Int. Ed. 2003, 42, 2004-2008.
[8]
Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia synthesis from first-principles calculations. Science 2005, 307, 555-558.
[9]
Ertl, G. Reactions at surfaces: From atoms to complexity (Nobel Lecture). Angew. Chem., Int. Ed. 2008, 47, 3524-3535.
[10]
Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 2015, 8, 2180-2186.
[11]
Kandemir, T.; Schuster, M. E.; Senyshyn, A.; Behrens, M.; Schlögl, R. The Haber-Bosch process revisited: On the real structure and stability of “Ammonia Iron” under working conditions. Angew. Chem., Int. Ed. 2013, 52, 12723-12726.
[12]
van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183-5191.
[13]
Hoffman, B. M.; Lukoyanov, D.; Dean, D. R.; Seefeldt, L. C. Nitrogenase: A draft mechanism. Acc. Chem. Res. 2013, 46, 587-595.
[14]
Howard, J. B.; Rees, D. C. How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation. Proc. Natl. Acad. Sci. USA 2006, 103, 17088-17093.
[15]
Schrock, R. R. Reduction of dinitrogen. Proc. Natl. Acad. Sci. USA 2006, 103, 17087.
[16]
Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Nitrogenase MoFe-Protein at 1.16 Å resolution: A central ligand in the FeMo-Cofactor. Science 2002, 297, 1696-1700.
[17]
Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490-500.
[18]
Yandulov, D. V.; Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 2003, 301, 76-78.
[19]
Shima, T.; Hu, S. W.; Luo, G.; Kang, X. H.; Luo, Y.; Hou, Z. M. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science 2013, 340, 1549-1552.
[20]
Spencer, L. P.; MacKay, B. A.; Patrick, B. O.; Fryzuk, M. D. Inner-sphere two-electron reduction leads to cleavage and functionalization of coordinated dinitrogen. Proc. Natl. Acad. Sci. USA 2006, 103, 17094-17098.
[21]
Hendrich, M. P.; Gunderson, W.; Behan, R. K.; Green, M. T.; Mehn, M. P.; Betley, T. A.; Lu, C. C.; Peters, J. C. On the feasibility of N2 fixation via a single-site FeI/FeIV cycle: Spectroscopic studies of FeI(N2)FeI, FeIV N, and related species. Proc. Natl. Acad. Sci. USA 2006, 103, 17107-17112.
[22]
Leigh, G. J. So that’s how it’s done--Maybe. Science 2003, 301, 55-56.
[23]
Fryzuk, M. D. More can be better in N2 activation. Science 2013, 340, 1530-1531.
[24]
Fryzuk, M. D. N2 coordination. Chem. Commun. 2013, 49, 4866-4868.
[25]
Fryzuk, M. D. Side-on end-on bound dinitrogen: An activated bonding mode that facilitates functionalizing molecular nitrogen. Acc. Chem. Res. 2009, 42, 127-133.
[26]
Akagi, F.; Matsuo, T.; Kawaguchi, H. Dinitrogen cleavage by a diniobium tetrahydride complex: Formation of a nitride and its conversion into imide species. Angew. Chem., Int. Ed. 2007, 46, 8778-8781.
[27]
Sivasankar, C.; Baskaran, S.; Tamizmani, M.; Ramakrishna, K. Lessons learned and lessons to be learned for developing homogeneous transition metal complexes catalyzed reduction of N2 to ammonia. J. Organomet. Chem. 2014, 752, 44-58.
[28]
Tanabe, Y.; Nishibayashi, Y. Developing more sustainable processes for ammonia synthesis. Coord. Chem. Rev. 2013, 257, 2551-2564.
[29]
Crossland, J. L.; Tyler, D. R. Iron-dinitrogen coordination chemistry: Dinitrogen activation and reactivity. Coord. Chem. Rev. 2010, 254, 1883-1894.
[30]
Pool, J. A.; Lobkovsky, E.; Chirik, P. J. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 2004, 427, 527-530.
[31]
Hazari, N. Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine. Chem. Soc. Rev. 2010, 39, 4044-4056.
[32]
MacLeod, K. C.; Holland, P. L. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nat. Commun. 2013, 5, 559-565.
[33]
MacKay, B. A.; Fryzuk, M. D. Dinitrogen coordination chemistry: On the biomimetic borderlands. Chem. Rev. 2004, 104, 385-402.
[34]
Gambarotta, S.; Scott, J. Multimetallic cooperative activation of N2. Angew. Chem., Int. Ed. 2004, 43, 5298-5308.
[35]
Connor, G. P.; Holland, P. L. Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction. Catal. Today 2017, 286, 21-40.
[36]
Burford, R. J.; Fryzuk, M. D. Examining the relationship between coordination mode and reactivity of dinitrogen. Nat. Rev. Chem. 2017, 1, 0026.
[37]
Hieringer, W.; Flechtner, K.; Kretschmann, A.; Seufert, K.; Auwärter, W.; Barth, J. V.; Görling, A.; Steinrück, H. P.; Gottfried, J. M. The surface trans effect: Influence of axial ligands on the surface chemical bonds of adsorbed metalloporphyrins. J. Am. Chem. Soc. 2011, 133, 6206-6222.
[38]
Gu, J. Y.; Cai, Z. F.; Wang, D.; Wan, L. J. Single-molecule imaging of iron-phthalocyanine-catalyzed oxygen reduction reaction by in situ scanning tunneling microscopy. ACS Nano 2016, 10, 8746-8750.
[39]
Zhang, J. L.; Wang, Z. Z.; Zhong, J. Q.; Yuan, K. D.; Shen, Q.; Xu, L. L.; Niu, T. C.; Gu, C. D.; Wright, C. A.; Tadich, A. et al. Single-molecule imaging of activated nitrogen adsorption on individual manganese phthalocyanine. Nano Lett. 2015, 15, 3181-3188.
[40]
Kim, H.; Chang, Y. H.; Jang, W. J.; Lee, E. S.; Kim, Y. H.; Kahng, S. J. Probing single-molecule dissociations from a bimolecular complex NO-Co-porphyrin. ACS Nano 2015, 9, 7722-7728.
[41]
Chang, M. H.; Chang, Y. H.; Kim, N. Y.; Kim, H.; Lee, S. H.; Choi, M. S.; Kim, Y. H.; Kahng, S. J. Tuning and sensing spin interactions in Co-porphyrin/Au with NH3 and NO2 binding. Phys. Rev. B 2019, 100, 245406.
[42]
Ma, X. F.; Chen, H. Z.; Shi, M. M.; Wu, G.; Wang, M.; Huang, J. High gas-sensitivity and selectivity of fluorinated zinc phthalocyanine film to some non-oxidizing gases at room temperature. Thin Solid Films 2005, 489, 257-261.
[43]
Newton, M. I.; Starke, T. K. H.; Willis, M. R.; McHale, G. NO2 detection at room temperature with copper phthalocyanine thin film devices. Sens. Actuators B: Chem. 2000, 67, 307-311.
[44]
Ho, K. C.; Tsou, Y. H. Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films. Sens. Actuators: B Chem. 2001, 77, 253-259.
[45]
Isvoranu, C.; Wang, B.; Ataman, E.; Knudsen, J.; Schulte, K.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Comparison of the carbonyl and nitrosyl complexes formed by adsorption of CO and NO on monolayers of iron phthalocyanine on Au(111). J. Phys. Chem. C 2011, 115, 24718-24727.
[46]
Dubey, M.; Bernasek, S. L.; Schwartz, J. Highly sensitive nitric oxide detection using X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 2007, 129, 6980-6981.
[47]
Praneeth, V. K. K.; Paulat, F.; Berto, T. C.; George, S. D.; Näther, C.; Sulok, C. D.; Lehnert, N. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: The elusive iron(III)-NO(radical) state and its influence on the properties of these complexes. J. Am. Chem. Soc. 2008, 130, 15288-15303.
[48]
Stróżecka, A.; Soriano, M.; Pascual, J. I.; Palacios, J. J. Reversible change of the spin state in a manganese phthalocyanine by coordination of CO molecule. Phys. Rev. Lett. 2012, 109, 147202.
[49]
Isvoranu, C.; Wang, B.; Ataman, E.; Schulte, K.; Knudsen, J.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Pyridine adsorption on single-layer iron phthalocyanine on Au(111). J. Phys. Chem. C 2011, 115, 20201-20208.
[50]
Cheng, Z. H.; Gao, L.; Deng, Z. T.; Liu, Q.; Jiang, N.; Lin, X.; He, X. B.; Du, S. X.; Gao, H. J. Epitaxial growth of iron phthalocyanine at the initial stage on Au(111) surface. J. Phys. Chem. C 2007, 111, 2656-2660.
[51]
Jiang, Y. H.; Xiao, W. D.; Liu, L. W.; Zhang, L. Z.; Lian, J. C.; Yang, K.; Du, S. X.; Gao, H. J. Self-assembly of metal phthalocyanines on Pb(111) and Au(111) surfaces at submonolayer coverage. J. Phys. Chem. C 2011, 115, 21750-21754.
[52]
Deimel, P. S.; Bababrik, R. M.; Wang, B.; Blowey, P. J.; Rochford, L. A.; Thakur, P. K.; Lee, T. L.; Bocquet, M. L.; Barth, J. V.; Woodruff, D. P. et al. Direct quantitative identification of the “surface trans-effect”. Chem. Sci. 2016, 7, 5647-5656.
[53]
Flechtner, K.; Kretschmann, A.; Steinrück, H. P.; Gottfried, J. M. NO-induced reversible switching of the electronic interaction between a porphyrin-coordinated cobalt ion and a silver surface. J. Am. Chem. Soc. 2007, 129, 12110-12111.
[54]
Murphy, B. E.; Krasnikov, S. A.; Sergeeva, N. N.; Cafolla, A. A.; Preobrajenski, A. B.; Chaika, A. N.; Lübben, O.; Shvets, I. V. Homolytic cleavage of molecular oxygen by manganese porphyrins supported on Ag(111). ACS Nano 2014, 8, 5190-5198.
[55]
Isvoranu, C.; Wang, B.; Ataman, E.; Schulte, K.; Knudsen, J.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Ammonia adsorption on iron phthalocyanine on Au(111): Influence on adsorbate-substrate coupling and molecular spin. J. Chem. Phys. 2011, 134, 114710.
[56]
Cheng, Z. H.; Gao, L.; Deng, Z. T.; Jiang, N.; Liu, Q.; Shi, D. X.; Du, S. X.; Guo, H. M.; Gao, H. J. Adsorption behavior of iron phthalocyanine on Au(111) surface at submonolayer coverage. J. Phys. Chem. C 2007, 111, 9240-9244.
[57]
Massimi, L.; Angelucci, M.; Gargiani, P.; Betti, M. G.; Montoro, S.; Mariani, C. Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy. J. Chem. Phys. 2014, 140, 244704.
[58]
Bai, Y.; Sekita, M.; Schmid, M.; Bischof, T.; Steinrück, H. P.; Gottfried, J. M. Interfacial coordination interactions studied on cobalt octaethylporphyrin and cobalt tetraphenylporphyrin monolayers on Au(111). Phys. Chem. Chem. Phys. 2010, 12, 4336-4344.
[59]
Schmid, M.; Zirzlmeier, J.; Steinrück, H. P.; Gottfried, J. M. Interfacial interactions of Iron(II) tetrapyrrole complexes on Au(111). J. Phys. Chem. C 2011, 115, 17028-17035.
[60]
Isvoranu, C.; Wang, B.; Schulte, K.; Ataman, E.; Knudsen, J.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Tuning the spin state of iron phthalocyanine by ligand adsorption. J. Phys.: Condens. Matter 2010, 22, 472002.
[61]
Hartley, F. R. The cis- and trans-effects of ligands. Chem. Soc. Rev. 1973, 2, 163-179.
[62]
Walzer, K.; Hietschold, M. STM and STS investigation of ultrathin tin phthalocyanine layers adsorbed on HOPG(0001) and Au(111). Surf. Sci. 2001, 471, 1-10.
[63]
Isvoranu, C.; Åhlund, J.; Wang, B.; Ataman, E.; Mårtensson, N.; Puglia, C.; Andersen, J. N.; Bocquet, M. L.; Schnadt, J. Electron spectroscopy study of the initial stages of iron phthalocyanine growth on highly oriented pyrolitic graphite. J. Chem. Phys. 2009, 131, 214709.
File
12274_2020_2863_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 March 2020
Revised: 17 April 2020
Accepted: 08 May 2020
Published: 16 June 2020
Issue date: September 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

Authors acknowledge the financial support from Singapore National Research Foundation under NRF2017NRF-NSFC001-007, Singapore MOE grant of MOE2019-T2-1-002 and NUS Flagship Green Energy Program.

Return