Journal Home > Volume 14 , Issue 6

The discoveries of ferromagnetic and ferroelectric two-dimensional (2D) materials have dramatically inspired intense interests due to their potential in the field of spintronic and nonvolatile memories. This review focuses on the latest 2D ferromagnetic and ferroelectric materials that have been most recently studied, including insulating ferromagnetic, metallic ferromagnetic, antiferromagnetic and ferroelectric 2D materials. The fundamental properties that lead to the long-range magnetic orders of 2D materials are discussed. The low Curie temperature (Tc) and instability in 2D systems limits their use in practical applications, and several strategies to address this constraint are proposed, such as gating and composition stoichiometry. A van der Waals (vdW) heterostructure comprising 2D ferromagnetic and ferroelectric materials will open a door to exploring exotic physical phenomena and achieve multifunctional or nonvolatile devices.


menu
Abstract
Full text
Outline
About this article

Ferromagnetic and ferroelectric two-dimensional materials for memory application

Show Author's information Zhen Liu1,2,3Longjiang Deng1,2,3Bo Peng1,2,3( )
National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

The discoveries of ferromagnetic and ferroelectric two-dimensional (2D) materials have dramatically inspired intense interests due to their potential in the field of spintronic and nonvolatile memories. This review focuses on the latest 2D ferromagnetic and ferroelectric materials that have been most recently studied, including insulating ferromagnetic, metallic ferromagnetic, antiferromagnetic and ferroelectric 2D materials. The fundamental properties that lead to the long-range magnetic orders of 2D materials are discussed. The low Curie temperature (Tc) and instability in 2D systems limits their use in practical applications, and several strategies to address this constraint are proposed, such as gating and composition stoichiometry. A van der Waals (vdW) heterostructure comprising 2D ferromagnetic and ferroelectric materials will open a door to exploring exotic physical phenomena and achieve multifunctional or nonvolatile devices.

Keywords: two-dimensional (2D) materials, heterostructure, ferroelectric, ferromagnetic, nonvolatile memory

References(134)

[1]
R. Peierls, Quelques propriétés typiques des corps solides. Ann. I. H. Poincaré. 1935, 5, 177-222.
[2]
L. D. Landau, Zur theorie der phasenumwandlungen II. Phys. Z. Sowjet. 1937, 11, 26-35.
[3]
A. K. Geim,; K. S. Novoselov, The rise of graphene. Nat. Mater. 2007, 6, 183-191.
[4]
N. D. Mermin,; H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 1966, 17, 1133-1136.
[5]
N. D. Mermin, Crystalline order in two dimensions. Phys. Rev. 1968, 176, 250-254.
[6]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[7]
X. X. Xi,; L. Zhao,; Z. F. Wang,; H. Berger,; L. Forró,; J. Shan,; K. F. Mak, Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765-769.
[8]
K. F. Mak,; C. Lee,; J. Hone,; J. Shan,; T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[9]
V. Fatemi,; S. F. Wu,; Y. Cao,; L. Bretheau,; Q. D. Gibson,; K. Watanabe,; T. Taniguchi,; R. J. Cava,; P. Jarillo-Herrero, Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 2018, 362, 926-929.
[10]
C. J. Cui,; W. J. Hu,; X. X. Yan,; C. Addiego,; W. P. Gao,; Y. Wang,; Z. Wang,; L. Z. Li,; Y. C. Cheng,; P. Li, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 2018, 18, 1253-1258.
[11]
Y. Zhou,; D. Wu,; Y. H. Zhu,; Y. J. Cho,; Q. He,; X. Yang,; K. Herrera,; Z. D. Chu,; Y. Han,; M. C. Downer, et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 2017, 17, 5508-5513.
[12]
S. G. Yuan,; X. Luo,; H. L. Chan,; C. C. Xiao,; Y. W. Dai,; M. H. Xie,; J. H. Hao, Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 2019, 10, 1775.
[13]
B. Huang,; G. Clark,; E. Navarro-Moratalla,; D. R. Klein,; R. Cheng,; K. L. Seyler,; D. Zhong,; E. Schmidgall,; M. A. McGuire,; D. H. Cobden, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270-273.
[14]
C. Gong,; L. Li,; Z. L. Li,; H. W. Ji,; A. Stern,; Y. Xia,; T. Cao,; W. Bao,; C. Z. Wang,; Y. Wang, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265-269.
[15]
J. F., Dillon, Jr.; H. Kamimura,; J. P. Remeika, Magneto-optical properties of ferromagnetic chromium trihalides. J. Phys. Chem. Solids 1966, 27, 1531-1549.
[16]
J. Suits, Faraday and kerr effects in magnetic compounds. IEEE Trans. Magn. 1972, 8, 95-105.
[17]
J. Zhang,; J. M. Soon,; K. P. Loh,; J. H. Yin,; J. Ding,; M. B. Sullivian,; P. Wu, Magnetic molybdenum disulfide nanosheet films. Nano Lett. 2007, 7, 2370-2376.
[18]
A. R. Botello-Méndez,; F. López-Urías,; M. Terrones,; H. Terrones, Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons. Nanotechnology 2009, 20, 325703.
[19]
Y. F. Li,; Z. Zhou,; S. B. Zhang,; Z. F. Chen, MoS2 Nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739-16744.
[20]
C. Ataca,; S. Ciraci, Functionalization of single-layer MoS2 honeycomb structures. J. Phys. Chem. C 2011, 115, 13303-13311.
[21]
A. Ramasubramaniam,; D. Naveh, Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys. Rev. B 2013, 87, 195201.
[22]
K. H. Zhang,; S. M. Feng,; J. J. Wang,; A. Azcatl,; N. Lu,; R. Addou,; N. Wang,; C. J. Zhou,; J. Lerach,; V. Bojan, et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586-6591.
[23]
V. Kochat,; A. Apte,; J. A. Hachtel,; H. Kumazoe,; A. Krishnamoorthy,; S. Susarla,; J. C. Idrobo,; F. Shimojo,; P. Vashishta,; R. Kalia, et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv. Mater. 2017, 29, 1703754.
[24]
P. J Zhao,; J. M. Zheng,; P. Guo,; Z. Y. Jiang,; L. K. Cao,; Y. Wan, Electronic and magnetic properties of Re-doped single-layer MoS2: A DFT study. Comp. Mater. Sci. 2017, 128, 287-293.
[25]
A. M. Hu,; L. L. Wang,; W. Z. Xiao,; G. Xiao,; Q. Y. Rong, Electronic structures and magnetic properties in nonmetallic element substituted MoS2 monolayer. Comp. Mater. Sci. 2015, 107, 72-78.
[26]
H. L. Shi,; H. Pan,; Y. W. Zhang,; B. I. Yakobson, Strong ferromagnetism in hydrogenated monolayer MoS2 tuned by strain. Phys. Rev. B 2013, 88, 205305.
[27]
C. T. Kuo,; M. Neumann,; K. Balamurugan,; H. J. Park,; S. Kang,; H. W. Shiu,; J. H. Kang,; B. H. Hong,; M. Han,; T. W. Noh, et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 2016, 6, 20904.
[28]
K. Z. Du,; X. Z. Wang,; Y. Liu,; P. Hu,; M. I. B. Utama,; C. K. Gan,; Q. H. Xiong,; C. Kloc, Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 2016, 10, 1738-1743.
[29]
J. U. Lee,; S. Lee,; J. H. Ryoo,; S. Kang,; T. Y. Kim,; P. Kim,; C. H. Park,; J. G. Park,; H. Cheong, Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 2016, 16, 7433-7438.
[30]
M. W. Lin,; H. L. Zhuang,; J. Q. Yan,; T. Z. Ward,; A. A. Puretzky,; C. M. Rouleau,; Z. Gai,; L. B. Liang,; V. Meunier,; B. G. Sumpter, et al. Ultrathin nanosheets of CrSiTe3: A semiconducting two- dimensional ferromagnetic material. J. Mater. Chem. C 2016, 4, 315-322.
[31]
Y. J. Deng,; Y. J. Yu,; Y. C. Song,; J. Z. Zhang,; N. Z. Wang,; Z. Y. Sun,; Y. F. Yi,; Y. Z. Wu,; S. W. Wu,; J. Y. Zhu, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94-99.
[32]
M. Bonilla,; S. Kolekar,; Y. J. Ma,; H. C. Diaz,; V. Kalappattil,; R. Das,; T. Eggers,; H. R. Gutierrez,; M. H. Phan,; M. Batzill, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289-293.
[33]
D. J. O’Hara,; T. C. Zhu,; A. H. Trout,; A. S. Ahmed,; Y. K. Luo,; C. H. Lee,; M. R. Brenner,; S. Rajan,; J. A. Gupta,; D. W. McComb, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 2018, 18, 3125-3131.
[34]
H. L. Zhuang,; R. G. Hennig, Stability and magnetism of strongly correlated single-layer VS2. Phys. Rev. B 2016, 93, 054429.
[35]
M. Kan,; S. Adhikari,; Q. Sun, Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys. Chem. Chem. Phys. 2014, 16, 4990-4994.
[36]
N. Sivadas,; M. W. Daniels,; R. H. Swendsen,; S. Okamoto,; D. Xiao, Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 2015, 91, 235425.
[37]
H. L. Zhuang,; Y. Xie,; P. R. C. Kent,; P. Ganesh, Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3. Phys. Rev. B 2015, 92, 035407.
[38]
W. B. Zhang,; Q. Qu,; P. Zhu,; C. H. Lam, Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C 2015, 3, 12457-12468.
[39]
J. J. He,; S. Y. Ma,; P. Lyu,; P. Nachtigall, Unusual Dirac half- metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers. J. Mater. Chem. C 2016, 4, 2518-2526.
[40]
Q. L. Sun,; N. Kioussis, Prediction of manganese trihalides as two- dimensional Dirac half-metals. Phys. Rev. B 2018, 97, 094408.
[41]
C. X. Huang,; J. Zhou,; H. P. Wu,; K. M. Deng,; P. Jena,; E. J. Kan, Quantum anomalous Hall effect in ferromagnetic transition metal halides. Phys. Rev. B 2017, 95, 045113.
[42]
H. Kumar,; N. C. Frey,; L. Dong,; B. Anasori,; Y. Gogotsi,; V. B. Shenoy, Tunable magnetism and transport properties in nitride MXenes. ACS Nano 2017, 11, 7648-7655.
[43]
J. J. He,; P. Lyu,; P. Nachtigall, New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. J. Mater. Chem. C 2016, 4, 11143-11149.
[44]
Y. Z. Zhang,; X. Wang,; Y. Feng,; J. Li,; C. T. Lim,; S. Ramakrishna, Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release. Biomacromolecules 2006, 7, 1049-1057.
[45]
M. Khazaei,; M. Arai,; T. Sasaki,; C. Y. Chung,; N. S. Venkataramanan,; M. Estili,; Y. Sakka,; Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 2013, 23, 2185-2192.
[46]
Y. L. Yue, Fe2C monolayer: An intrinsic ferromagnetic MXene. J. Magn. Magn. Mater. 2017, 434, 164-168.
[47]
Y. J. Sun,; Z. W. Zhuo,; X. J. Wu,; J. L. Yang, Room-temperature ferromagnetism in two-dimensional Fe2Si nanosheet with enhanced spin-polarization ratio. Nano Lett. 2017, 17, 2771-2777.
[48]
T. S. Zhao,; J. Zhou,; Q. Wang,; Y. Kawazoe,; P. Jena, Ferromagnetic and half-metallic FeC2 monolayer containing C2 dimers. ACS Appl. Mater. Interfaces 2016, 8, 26207-26212.
[49]
M. Kan,; J. Zhou,; Q. Sun,; Y. Kawazoe,; P. Jena, The intrinsic ferromagnetism in a MnO2 monolayer. J. Phys. Chem. Lett. 2013, 4, 3382-3386.
[50]
J. C. Wu,; X. Peng,; Y. Q. Guo,; H. D. Zhou,; J. Y. Zhao,; K. Q. Ruan,; W. S. Chu,; C. Z. Wu, Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy. Front. Phys. 2018, 13, 138110.
[51]
K. Zhang,; R. Khan,; H. Y. Guo,; I. Ali,; X. L. Li,; Y. X. Lin,; H. P. Chen,; W. S. Yan,; X. J. Wu,; L. Song, Room-temperature ferromagnetism in the two-dimensional layered Cu2MoS4 nanosheets. Phys. Chem. Chem. Phys. 2017, 19, 1735-1739.
[52]
B. Sachs,; T. O. Wehling,; K. S. Novoselov,; A. I. Lichtenstein,; M. I. Katsnelson, Ferromagnetic two-dimensional crystals: Single layers of K2CuF4. Phys. Rev. B 2013, 88, 201402.
[53]
S. H. Zhang,; Y. W. Li,; T. S. Zhao,; Q. Wang, Robust ferromagnetism in monolayer chromium nitride. Sci. Rep. 2014, 4, 5241.
[54]
Y. Zhang,; J. M. Pang,; M. G. Zhang,; X. Gu,; L. Huang, Two- dimensional Co2S2 monolayer with robust ferromagnetism. Sci. Rep. 2017, 7, 15993.
[55]
R. C. G. Naber,; C. Tanase,; P. W. M. Blom,; G. H. Gelinck,; A. W. Marsman,; F. J. Touwslager,; S. Setayesh,; D. M. de Leeuw, High-performance solution-processed polymer ferroelectric field- effect transistors. Nat. Mater. 2005, 4, 243-248.
[56]
A. Q. Jiang,; C. Wang,; K. J. Jin,; X. B. Liu,; J. F. Scott,; C. S. Hwang,; T. A. Tang,; H. B. Lu,; G. Z. Yang, A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 2011, 23, 1277-1281.
[57]
R. C. G. Naber,; K. Asadi,; P. W. M. Blom,; D. M. De Leeuw,; B. De Boer, Organic nonvolatile memory devices based on ferroelectricity. Adv. Mater. 2010, 22, 933-945.
[58]
G. Catalan,; J. F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463-2485.
[59]
J. F. Scott, Applications of modern ferroelectrics. Science 2007, 315, 954-959.
[60]
J. Valasek, Piezo-electric and allied phenomena in rochelle salt. Phys. Rev. 1921, 17, 475-481.
[61]
D. D. Fong,; G. B. Stephenson,; S. K. Streiffer,; J. A. Eastman,; O. Auciello,; P. H. Fuoss,; C. Thompson, Ferroelectricity in ultrathin perovskite films. Science 2004, 304, 1650-1653.
[62]
E. Y. Tsymbal,; H. Kohlstedt, Tunneling across a ferroelectric. Science 2006, 313, 181-183.
[63]
W. L. Zhong,; Y. G. Wang,; P. L. Zhang,; B. D. Qu, Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys. Rev. B 1994, 50, 698-703.
[64]
J. Junquera,; P. Ghosez, Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 2003, 422, 506-509.
[65]
A. Gruverman,; D. Wu,; H. Lu,; Y. Wang,; H. W. Jang,; C. M. Folkman,; M. Y. Zhuravlev,; D. Felker,; M. Rzchowski,; C. B. Eom, et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 2009, 9, 3539-3543.
[66]
H. Wang,; Z. R. Liu,; H. Y. Yoong,; T. R. Paudel,; J. X. Xiao,; R. Guo,; W. N. Lin,; P. Yang,; J. Wang,; G. M. Chow, et al. Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit. Nat. Commun. 2018, 9, 3319.
[67]
T. S. Böscke,; J. Müller,; D. Bräuhaus,; U. Schröder,; U. Böttger, Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903.
[68]
J. Müller,; T. S. Böscke,; U. Schröder,; S. Mueller,; D. Bräuhaus,; U. Böttger,; L. Frey,; T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 2012, 12, 4318-4323.
[69]
S. N. Shirodkar,; U. V. Waghmare, Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 2014, 112, 157601.
[70]
E. Bruyer,; D. Di Sante,; P. Barone,; A. Stroppa,; M. H. Whangbo,; S. Picozzi, Possibility of combining ferroelectricity and Rashba-like spin splitting in monolayers of the 1T-type transition-metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2016, 94, 195402.
[71]
Q. Yang,; M. H. Wu,; J. Li, Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 2018, 9, 7160-7164.
[72]
C. Liu,; W. H. Wan,; J. Ma,; W. Guo,; Y. G. Yao, Robust ferroelectricity in two-dimensional SbN and BiP. Nanoscale 2018, 10, 7984-7990.
[73]
L. Li,; M. H. Wu, Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 2017, 11, 6382-6388.
[74]
B. Xu,; H. Xiang,; Y. D. Xia,; K. Jiang,; X. G. Wan,; J. He,; J. Yin,; Z. G. Liu, Monolayer AgBiP2Se6: An atomically thin ferroelectric semiconductor with out-plane polarization. Nanoscale 2017, 9, 8427-8434.
[75]
F. C. Liu,; L. You,; K. L. Seyler,; X. B. Li,; P. Yu,; J. H. Lin,; X. W. Wang,; J. D. Zhou,; H. Wang,; H. Y. He, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 2016, 7, 12357.
[76]
W. S. Song,; R. X. Fei,; L. Yang, Off-plane polarization ordering in metal chalcogen diphosphates from bulk to monolayer. Phys. Rev. B 2017, 96, 235420.
[77]
S. Guan,; C. Liu,; Y. Lu,; Y. Yao,; S. A. Yang, Tunable ferroelectricity and anisotropic electric transport in monolayer β-GeSe. Phys. Rev. B 2018, 97, 144104.
[78]
H. Wang,; X. F. Qian, Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater. 2017, 4, 015042.
[79]
W. H. Wan,; C. Liu,; W. D. Xiao,; Y. G. Yao, Promising ferroelectricity in 2D group IV tellurides: A first-principles study. Appl. Phys. Lett. 2017, 111, 132904.
[80]
X. L. Zhang,; Z. X. Yang,; Y. Chen, Novel two-dimensional ferroelectric PbTe under tension: A first-principles prediction. J. Appl. Phys. 2017, 122, 064101.
[81]
C. C. Xiao,; F. Wang,; S. A. Yang,; Y. H. Lu,; Y. P. Feng,; S. B. Zhang, Elemental ferroelectricity and antiferroelectricity in group-V monolayer. Adv. Funct. Mater. 2018, 28, 1707383.
[82]
Y. Wang,; C. C. Xiao,; M. G. Chen,; C. Q. Hua,; J. D. Zou,; C. Wu,; J. Z. Jiang,; S. A. Yang,; Y. H. Lu,; W. Ji, Two-dimensional ferroelectricity and switchable spin-textures in ultra-thin elemental Te multilayers. Mater. Horiz. 2018, 5, 521-528.
[83]
Z. Y. Fei,; W. J. Zhao,; T. A. Palomaki,; B. S. Sun,; M. K. Miller,; Z. Y. Zhao,; J. Q. Yan,; X. D. Xu,; D. H. Cobden, Ferroelectric switching of a two-dimensional metal. Nature 2018, 560, 336-339.
[84]
C. X. Zheng,; L. Yu,; L. Zhu,; J. L. Collins,; D. Kim,; Y. D. Lou,; C. Xu,; M. Li,; Z. Wei,; Y. P. Zhang, et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 2018, 4, 7720.
[85]
K. Chang,; J. W. Liu,; H. C. Lin,; N. Wang,; K. Zhao,; A. M. Zhang,; F. Jin,; Y. Zhong,; X. P. Hu,; W. H. Duan, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016, 353, 274-278.
[86]
A. Belianinov,; Q. He,; A. Dziaugys,; P. Maksymovych,; E. Eliseev,; A. Borisevich,; A. Morozovska,; J. Banys,; Y. Vysochanskii,; S. V. Kalinin, CuInP2S6 room temperature layered ferroelectric. Nano Lett. 2015, 15, 3808-3814.
[87]
L. You,; F. C. Liu,; H. S. Li,; Y. Z. Hu,; S. Zhou,; L. Chang,; Y. Zhou,; Q. D. Fu,; G. L. Yuan,; S. Dong, et al. In-plane ferroelectricity in thin flakes of van der Waals hybrid perovskite. Adv. Mater. 2018, 30, 1803249.
[88]
M. A. McGuire,; H. Dixit,; V. R. Cooper,; B. C. Sales, Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 2015, 27, 612-620.
[89]
K. L. Seyler,; D. Zhong,; D. R. Klein,; S. Y. Gao,; X. O. Zhang,; B. Huang,; E. Navarro-Moratalla,; L. Yang,; D. H. Cobden,; M. A. McGuire, et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 2018, 14, 277-281.
[90]
D. R. Klein,; D. MacNeill,; J. L. Lado,; D. Soriano,; E. Navarro- Moratalla,; K. Watanabe,; T. Taniguchi,; S. Manni,; P. Canfield,; J. Fernández-Rossier, et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 2018, 360, 1218-1222.
[91]
S. Djurdjić Mijin,; A. Šolajić,; J. Pešić,; M. Šćepanović,; Y. Liu,; A. Baum,; C. Petrovic,; N. Lazarević,; Z. V. Popović, Lattice dynamics and phase transition in CrI3 single crystals. Phys. Rev. B 2018, 98, 104307.
[92]
Z. Y. Sun,; Y. F. Yi,; T. C. Song,; G. Clark,; B. Huang,; Y. W. Shan,; S. Wu,; D. Huang,; C. L. Gao,; Z. H. Chen, et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 2019, 572, 497-501.
[93]
D. R. Klein,; D. MacNeill,; Q. Song,; D. T. Larson,; S. Fang,; M. Y. Xu,; R. A. Ribeiro,; P. C. Canfield,; E. Kaxiras,; R. Comin, et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys. 2019, 15, 1255-1260.
[94]
N. Sivadas,; S. Okamoto,; X. D. Xu,; C. J. Fennie,; D. Xiao, Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 2018, 18, 7658-7664.
[95]
K. Guo,; B. W. Deng,; Z. Liu,; C. F. Gao,; Z. T. Shi,; L. Bi,; L. Zhang,; H. P. Lu,; P. H. Zhou,; L. B. Zhang, et al. Layer dependence of stacking order in nonencapsulated few-layer CrI3. Sci. China Mater. 2020, 63, 413-420.
[96]
B. Huang,; G. Clark,; D. R. Klein,; D. MacNeill,; E. Navarro-Moratalla,; K. L. Seyler,; N. Wilson,; M. A. McGuire,; D. H. Cobden,; D. Xiao, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544-548.
[97]
S. W. Jiang,; L. Z. Li,; Z. F. Wang,; K. F. Mak,; J. Shan, Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549-553.
[98]
T. X. Li,; S. W. Jiang,; N. Sivadas,; Z. F. Wang,; Y. Xu,; D. Weber,; J. E. Goldberger,; K. Watanabe,; T. Taniguchi,; C. J. Fennie, et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 2019, 18, 1303-1308.
[99]
T. C. Song,; Z. Y. Fei,; M. Yankowitz,; Z. Lin,; Q. N. Jiang,; K. Hwangbo,; Q. Zhang,; B. S. Sun,; T. Taniguchi,; K. Watanabe, et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 2019, 18, 1298-1302.
[100]
W. Y. Xing,; Y. Y. Chen,; P. M. Odenthal,; X. Zhang,; W. Yuan,; T. Su,; Q. Song,; T. Y. Wang,; J. N. Zhong,; S. Jia, et al. Electric field effect in multilayer Cr2Ge2Te6: A ferromagnetic 2D material. 2D Mater. 2017, 4, 024009.
[101]
Z. Wang,; T. Y. Zhang,; M. Ding,; B. J. Dong,; Y. X. Li,; M. L. Chen,; X. X. Li,; J. Q. Huang,; H. W. Wang,; X. T. Zhao, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 2018, 13, 554-559.
[102]
M. Lohmann,; T. Su,; B. Niu,; Y. S. Hou,; M. Alghamdi,; M. Aldosary,; W. Y. Xing,; J. N. Zhong,; S. Jia,; W. Han, et al. Probing magnetism in insulating Cr2Ge2Te6 by induced anomalous hall effect in Pt. Nano Lett. 2019, 19, 2397-2403.
[103]
Y. Tian,; M. J. Gary,; H. W. Ji,; R. J. Cava,; K. S. Burch, Magneto- elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 2016, 3, 025035.
[104]
H. J. Deiseroth,; K. Aleksandrov,; C. Reiner,; L. Kienle,; R. K. Kremer, Fe3GeTe2 and Ni3GeTe2—Two new layered transition-metal compounds: Crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur. J. Inorg. Chem. 2006, 2006, 1561-1567.
[105]
Z. Y. Fei,; B. Huang,; P. Malinowski,; W. B. Wang,; T. C. Song,; J. Sanchez,; W. Yao,; D. Xiao,; X. Y. Zhu,; A. F. May, et al. Two- dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778-782.
[106]
S. S. Liu,; X. Yuan,; Y. C. Zou,; Y. Sheng,; C. Huang,; E. Z. Zhang,; J. W. Ling,; Y. W. Liu,; W. Y. Wang,; C. Zhang, et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. npj 2D Mater. Appl. 2017, 1, 30.
[107]
C. Tan,; J. Lee,; S. G. Jung,; T. Park,; S. Albarakati,; J. Partridge,; M. R. Field,; D. G. McCulloch,; L. Wang,; C. Lee, Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 2018, 9, 1554.
[108]
T. Jungwirth,; X. Marti,; P. Wadley,; J. Wunderlich, Antiferromagnetic spintronics. Nat. Nanotechnol. 2016, 11, 231-241.
[109]
V. Baltz,; A. Manchon,; M. Tsoi,; T. Moriyama,; T. Ono,; Y. Tserkovnyak, Antiferromagnetic spintronics. Rev. Mod. Phys. 2018, 90, 015005.
[110]
A. Wiedenmann,; J. Rossat-Mignod,; A. Louisy,; R. Brec,; J. Rouxel, Neutron diffraction study of the layered compounds MnPSe3 and FePSe3. Solid State Commun. 1981, 40, 1067-1072.
[111]
P. A. Joy,; S. Vasudevan, Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni). Phys. Rev. B 1992, 46, 5425-5433.
[112]
B. Taylor,; J. Steger,; A. Wold,; E. Kostiner, Preparation and properties of iron phosphorus triselenide, FePSe3. Inorg. Chem. 1974, 13, 2719-2721.
[113]
X. Z. Wang,; K. Z. Du,; F. Y. Y. Liu,; P. Hu,; J. Zhang,; Q. Zhang,; M. H. S. Owen,; X. Lu,; C. K. Gan,; P. Sengupta, et al. Raman spectroscopy of atomically thin two-dimensional magneticiron phosphorus trisulfide (FePS3) crystals. 2D Mater. 2016, 3, 031009.
[114]
C. R. S. Haines,; M. J. Coak,; A. R. Wildes,; G. I. Lampronti,; C. Liu,; P. Nahai-Williamson,; H. Hamidov,; D. Daisenberger,; S. S. Saxena, Pressure-induced electronic and structural phase evolution in the van der Waals compound FePS3. Phys. Rev. Lett. 2018, 121, 266801.
[115]
J. Lee,; T. Y. Ko,; J. H. Kim,; H. Bark,; B. Kang,; S. G. Jung,; T. Park,; Z. Lee,; S. Ryu,; C. Lee, Structural and optical properties of single- and few-layer magnetic semiconductor CrPS4. ACS Nano 2017, 11, 10935-10944.
[116]
P. F. Gu,; Q. H. Tan,; Y. Wan,; Z. L. Li,; Y. X. Peng,; J. W. Lai,; J. C. Ma,; X. H. Yao,; S. Q. Yang,; K. Yuan, et al. Photoluminescent quantum interference in a van der Waals magnet preserved by symmetry breaking. ACS Nano 2020, 14, 1003-1010.
[117]
M. J. Lee,; S. Lee,; S. Lee,; K. Balamurugan,; C. Yoon,; J. T. Jang,; S. H. Kim,; D. H. Kwon,; M. Kim,; J. P. Ahn, et al. Synaptic devices based on two-dimensional layered single-crystal chromium thiophosphate (CrPS4). NPG Asia Mater. 2018, 10, 23-30.
[118]
W. J. Ding,; J. B. Zhu,; Z. Wang,; Y. F. Gao,; D. Xiao,; Y. Gu,; Z. Y. Zhang,; W. G. Zhu, Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956.
[119]
S. Y. Wan,; Y. Li,; W. Li,; X. Y. Mao,; W. G. Zhu,; H. L. Zeng, Room- temperature ferroelectricity and a switchable diode effect in two- dimensional α-In2Se3 thin layers. Nanoscale 2018, 10, 14885-14892.
[120]
H. J. Kim,; S. H. Kang,; I. Hamada,; Y. W. Son, Origins of the structural phase transitions in MoTe2 and WTe2. Phys. Rev. B 2017, 95, 180101.
[121]
Z. Wang,; D. Sapkota,; T. Taniguchi,; K. Watanabe,; D. Mandrus,; A. F. Morpurgo, Tunneling spin valves based on Fe3GeTe2/hBN/ Fe3GeTe2 van der Waals heterostructures. Nano Lett. 2018, 18, 4303-4308.
[122]
Z. Wang,; I. Gutiérrez-Lezama,; N. Ubrig,; M. Kroner,; M. Gibertini,; T. Taniguchi,; K. Watanabe,; A. Imamoğlu,; E. Giannini,; A. F. Morpurgo, Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 2018, 9, 2516.
[123]
D. Ghazaryan,; M. T. Greenaway,; Z. Wang,; V. H. Guarochico-Moreira,; I. J. Vera-Marun,; J. Yin,; Y. Liao,; S. V. Morozov,; O. Kristanovski,; A. I. Lichtenstein, et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 2018, 1, 344-349.
[124]
D. Zhong,; K. L. Seyler,; X. Linpeng,; R. Cheng,; N. Sivadas,; B. Huang,; E. Schmidgall,; T. Taniguchi,; K. Watanabe,; M. A. McGuire, et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 2017, 3, 1603113.
[125]
M. N. Baibich,; J. M. Broto,; A. Fert,; F. N. Van Dau,; F. Petroff,; P. Etienne,; G. Creuzet,; A. Friederich,; J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472-2475.
[126]
G. Binasch,; P. Grünberg,; F. Saurenbach,; W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989, 39, 4828-4830.
[127]
C. Ko,; Y. Lee,; Y. B. Chen,; J. Suh,; D. Y. Fu,; A. Suslu,; S. Lee,; J. D. Clarkson,; H. S. Choe,; S. Tongay, et al. Ferroelectrically gated atomically thin transition-metal dichalcogenides as nonvolatile memory. Adv. Mater. 2016, 28, 2923-2930.
[128]
K. Y. Ding,; J. J. Wang,; Y. X. Zhou,; H. Tian,; L. Lu,; R. Mazzarello,; C. L. Jia,; W. Zhang,; F. Rao,; E. Ma, Phase-change heterostructure enables ultralow noise and drift for memory operation. Science 2019, 366, 210-215.
[129]
W. C. Huang,; W. B. Zhao,; Z. Luo,; Y. W. Yin,; Y. Lin,; C. M. Hou,; B. B. Tian,; C. G. Duan,; X. G. Li, A high-speed and low-power multistate memory based on multiferroic tunnel junctions. Adv. Electron. Mater. 2018, 4, 1700560.
[130]
N. P. Lu,; P. F. Zhang,; Q. H. Zhang,; R. M. Qiao,; Q. He,; H. B. Li,; Y. J. Wang,; J. W. Guo,; D. Zhang,; Z. Duan, et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 2017, 546, 124-128.
[131]
X. Z. Chen,; X. F. Zhou,; R. Cheng,; C. Song,; J. Zhang,; Y. C. Wu,; Y. Ba,; H. B. Li,; Y. M. Sun,; Y. F. You, et al. Electric field control of Néel spin-orbit torque in an antiferromagnet. Nat. Mater. 2019, 18, 931-935.
[132]
A. F. May,; D. Ovchinnikov,; Q. Zheng,; R. Hermann,; S. Calder,; B. Huang,; Z. Y. Fei,; Y. H. Liu,; X. D. Xu,; M. A. McGuire, Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 2019, 13, 4436-4442.
[133]
D. Shcherbakov,; P. Stepanov,; D. Weber,; Y. X. Wang,; J. Hu,; Y. L. Zhu,; K. Watanabe,; T. Taniguchi,; Z. Q. Mao,; W. Windl, et al. Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide. Nano Lett. 2018, 18, 4214-4219.
[134]
A. Fert,; V. Cros,; J. Sampaio, Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152-156.
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 March 2020
Revised: 29 April 2020
Accepted: 08 May 2020
Published: 29 May 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 51602040 and 51872039), Science and Technology Program of Sichuan (No. M112018JY0025) and Scientific Research Foundation for New Teachers of UESTC (No. A03013023601007).

Return