Journal Home > Volume 13 , Issue 9

A comprehensive picture of the initial stages of silicene growth on graphite is drawn. Evidence is shown that quasiparticle interferences play a crucial role in the formation of the observed silicene configurations. We propose, on one hand, that the charge modulations caused by those quantum interferences serve as templates and guide the incoming Si atoms to self-assemble to the unique ( 3×3)R30° honeycomb atomic arrangement. On the other hand, their limited extension limits the growth to about 150 Si atoms under our present deposition conditions. The here proposed electrostatic interaction finally explains the unexpected stability of the observed silicene islands over time and with temperature. Despite the robust guiding nature of those quantum interferences during the early growth phase, we demonstrate that the window of experimental conditions for silicene growth is quite narrow, making it an extremely challenging experimental task. Finally, it is shown that the experimentally observed three-dimensional silicon clusters might very well be the simple result of the end of the silicene growth resulting from the limited extent of the quasi-particle interferences.


menu
Abstract
Full text
Outline
About this article

The potentially crucial role of quasi-particle interferences for the growth of silicene on graphite

Show Author's information Fatme Jardali1Christoph Lechner1Maurizio De Crescenzi2Manuela Scarselli2Isabelle Berbezier3Paola Castrucci2Holger Vach1( )
LPICM, CNRS, Ecole Polytechnique, IP Paris, Palaiseau 91128, France
Dipartimento di Fisica, Università di Roma "Tor Vergata", Roma 00133, Italy
CNRS, Aix-Marseille Université, IM2NP, Marseille 13397, France

Abstract

A comprehensive picture of the initial stages of silicene growth on graphite is drawn. Evidence is shown that quasiparticle interferences play a crucial role in the formation of the observed silicene configurations. We propose, on one hand, that the charge modulations caused by those quantum interferences serve as templates and guide the incoming Si atoms to self-assemble to the unique ( 3×3)R30° honeycomb atomic arrangement. On the other hand, their limited extension limits the growth to about 150 Si atoms under our present deposition conditions. The here proposed electrostatic interaction finally explains the unexpected stability of the observed silicene islands over time and with temperature. Despite the robust guiding nature of those quantum interferences during the early growth phase, we demonstrate that the window of experimental conditions for silicene growth is quite narrow, making it an extremely challenging experimental task. Finally, it is shown that the experimentally observed three-dimensional silicon clusters might very well be the simple result of the end of the silicene growth resulting from the limited extent of the quasi-particle interferences.

Keywords: scanning tunneling microscopy (STM), ab initio calculations, highly oriented pyrolytic graphite (HOPG), silicene growth, quasi-particle interferences, two-dimensional (2D) self-assembly

References(26)

[1]
Mannix, A. J.; Kiraly, B.; Hersam, M. C.; Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 2017, 1, 0014.
[2]
De Crescenzi, M.; Berbezier, I.; Scarselli, M.; Castrucci, P.; Abbarchi, M.; Ronda, A.; Jardali, F.; Park, J.; Vach, H. Formation of silicene nanosheets on graphite. ACS Nano 2016, 10, 11163-11171.
[3]
Peng, W. B.; Xu, T.; Diener, P.; Biadala, L.; Berthe, M.; Pi, X. D.; Borensztein, Y.; Curcella, A.; Bernard, R.; Prévot, G. et al. Resolving the controversial existence of silicene and germanene nanosheets grown on graphite. ACS Nano 2018, 12, 4754-4760.
[4]
Ronci, F.; Colonna, S.; Flammini, R.; De Crescenzi, M.; Scarselli, M.; Salvato, M.; Berbezier, I.; Jardali, F.; Lechner, C.; Pochet, P. et al. High graphene permeability for room temperature silicon deposition: The role of defects. Carbon 2020, 158, 631-641.
[5]
Park, C.; Yang, H.; Mayne, A. J.; Dujardin, G.; Seo, S.; Kuk, Y.; Ihm, J.; Kim, G. Formation of unconventional standing waves at graphene edges by valley mixing and pseudospin rotation. Proc. Natl. Acad. Sci. USA 2011, 108, 18622-18625.
[6]
Castrucci, P.; Fabbri, F.; Delise, T.; Scarselli, M.; Salvato, M.; Pascale, S.; Francini, F.; Berbezier, I.; Lechner, C.; Jardali, F. et al. Raman investigation of air-stable silicene nanosheets on an inert graphite surface. Nano Res. 2018, 11, 5879-5889.
[7]
Yue, N. L.; Myers, J.; Su, L. Q.; Wang, W. T.; Liu, F. D.; Tsu, R.; Zhuang, Y.; Zhang, Y. Growth of oxidation-resistive silicene-like thin flakes and Si nanostructures on graphene. J. Semicond. 2019, 40, 062001.
[8]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[9]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[10]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[11]
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.
[12]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[13]
Windiks, R.; Delley, B. Massive thermostatting in isothermal density functional molecular dynamics simulations. J. Chem. Phys. 2003, 119, 2481-2487.
[14]
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511-519.
[15]
Cai, Y. M.; Chuu, C. P.; Wei, C. M.; Chou, M. Y. Stability and electronic properties of two-dimensional silicene and germanene on graphene. Phys. Rev. B 2013, 88, 245408.
[16]
Prévot, G.; Bernard, R.; Cruguel, H.; Curcella, A.; Lazzeri, M.; Leoni, T.; Masson, L.; Ranguis, A.; Borensztein, Y. Formation of silicene on silver: Strong interaction between Ag and Si. Phys. Status Solidi B 2016, 253, 206-217.
[17]
Díaz Álvarez, A.; Zhu, T.; Nys, J. P.; Berthe, M.; Empis, M.; Schreiber, J.; Grandidier, B.; Xu, T. Scanning tunneling spectroscopy and Raman spectroscopy of monolayer silicene on Ag(111). Surf. Sci. 2016, 653, 92-96.
[18]
Crommie, M. F.; Lutz, C. P.; Eigler D. M. Imaging standing waves in a two-dimensional electron gas. Nature 1993, 363, 524-527.
[19]
Hasegawa, Y.; Avouris. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 1993, 71, 1071-1074.
[20]
Petersen, L.; Sprunger, P. T.; Hofmann; Lægsgaard, E.; Briner, B. G.; Doering, M.; Rust, H. P.; Bradshaw, A. M.; Besenbacher, F.; Plummer, E. W. Direct imaging of the two-dimensional Fermi contour: Fourier-transform STM. Phys. Rev. B 1998, 57, R6858-R6861.
[21]
Reifenberger, R. Lessons from Nanoscience: A lecture notes series: Volume 4, fundamentals of atomic force microscopy, Part I: Foundations, 2015; pp 49. https://doi.org/10.1142/9343.
[22]
Yang, H.; Mayne, A. J.; Boucherit, M.; Comtet, G.; Dujardin, G.; Kuk, Y. Quantum interference channeling at graphene edges. Nano Lett. 2010, 10, 943-947.
[23]
Rutter, G. M.; Crain, J. N.; Guisinger, N. P.; Li, T.; First, P. N.; Stroscio, J. A. Scattering and interference in epitaxial graphene. Science 2007, 317, 219-222.
[24]
Iannuzzi, M.; Kalichava, I.; Ma, H. F.; Leake, S. J.; Zhou, H. T.; Li, G.; Zhang, Y.; Bunk, O.; Gao, H. J.; Hutter, J. et al. Moiré beatings in graphene on Ru(0001). Phys. Rev. B 2013, 88, 125433.
[25]
Gupta, V.; Kumar, A.; Ray, N. Permeability of two-dimensional graphene and hexagonal-boron nitride to hydrogen atom. AIP Conf. Proc. 2018, 1953, 140013.
[26]
Tchalala, M. R.; Enriquez, H.; Bendounan, A.; Mayne, A. J.; Dujardin, G.; Kara, A.; Ali, M. A.; Oughaddou, H. Tip-induced oxidation of silicene nano-ribbons. Nanoscale Adv. 2020, .
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 December 2019
Revised: 30 April 2020
Accepted: 08 May 2020
Published: 25 June 2020
Issue date: September 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We are most thankful to Dr. Andrew Mayne who shared his in-depth understanding of quantum interferences with us in several exciting and encouraging discussions. H. V., F. J., and C. L. gratefully acknowledge the HPC centers of IDRIS (Grant A004-090642) and CERMM for computational resources. F. J. acknowledges the Hariri Foundation for Sustainable Human Development for the scholarship that was awarded to her during her PhD studies. We would like to express our most sincere thanks to Prof. Chih-Piao Chuu for having kindly provided us with the structure files of his most stable silicene configurations. M. D. C., M. S. and P. C. acknowledge the European Community for the HORIZON 2020 MSC-RISE Project DiSeTCom (GA 823728). Many thanks are also due to Dr. James Creel for the careful reading of the present manuscript. We finally would like to acknowledge the fruitful discussions we had with Prof. Sanjay Mathur at the University of Köln.

Return