AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The versatility of Fe(II) in the synthesis of uniform citrate-stabilized plasmonic nanoparticles with tunable size at room temperature

Carlos Fernández-Lodeiro1,2Javier Fernández-Lodeiro3,4Enrique Carbó-Argibay5Carlos Lodeiro3,4Jorge Pérez-Juste1,2( )Isabel Pastoriza-Santos1,2( )
CINBIO, Universidade de Vigo, Campus universitario Lagoas, Marcosende, 36310 Vigo, Spain
Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516 Caparica, Portugal
PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal
International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
Show Author Information

Graphical Abstract

Abstract

A highly versatile seed-mediated approach for the synthesis of citrate-stabilized gold, silver and palladium nanoparticles (NPs) with size control is reported. The use of iron(II) as a reducing agent enables the fabrication of monodisperse NPs in a wide range of sizes (from 15 nm to at least 120 nm (90 nm for Pd)) at room temperature. The citrate as capping ligand on the NPs surface facilitates its further surface modification with proteins and thiolated molecules.

Electronic Supplementary Material

Download File(s)
12274_2020_2854_MOESM1_ESM.pdf (6.7 MB)

References

[1]
Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55-75.
[2]
Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20-22.
[3]
Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 2006, 110, 15700-15707.
[4]
Ji, X. H.; Song, X. N.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc. 2007, 129, 13939-13948.
[5]
Ojea-Jiménez, I.; Romero, F. M.; Bastúus, N. G.; Puntes, V. Small gold nanoparticles synthesized with sodium citrate and heavy water: Insights into the reaction mechanism. J. Phys. Chem. C 2010, 114, 1800-1804.
[6]
Schulz, F.; Homolka, T.; Bastús, N. G.; Puntes, V.; Weller, H.; Vossmeyer, T. Little adjustments significantly improve the turkevich synthesis of gold nanoparticles. Langmuir 2014, 30, 10779-10784.
[7]
Brown, K. R.; Walter, D. G.; Natan, M. J. Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chem. Mater. 2000, 12, 306-313.
[8]
Perrault, S. D.; Chan, W. C. W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. J. Am. Chem. Soc. 2009, 131, 17042-17043.
[9]
Bastús, N. G.; Comenge, J.; Puntes, V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus ostwald ripening. Langmuir 2011, 27, 11098-11105.
[10]
Ziegler, C.; Eychmüller, A. Seeded growth synthesis of uniform gold nanoparticles with diameters of 15-300 nm. J. Phys. Chem. C 2011, 115, 4502-4506.
[11]
Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer-Verlag: Berlin, Heidelberg, 1995.
[12]
Lee, P. C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391-3395.
[13]
Wan, Y.; Guo, Z. R.; Jiang, X. L.; Fang, K.; Lu, X.; Zhang, Y.; Gu, N. Quasi-spherical silver nanoparticles: Aqueous synthesis and size control by the seed-mediated Lee-Meisel method. J. Colloid Interface Sci. 2013, 394, 263-268.
[14]
Bastús, N. G.; Merkoçi, F.; Piella, J.; Puntes, V. Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties. Chem. Mater. 2014, 26, 2836-2846.
[15]
Samal, A. K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzán, L. M.; Pérez-Juste, J.; Pastoriza-Santos, I. Size tunable Au@Ag core shell nanoparticles: Synthesis and surface-enhanced Raman scattering properties. Langmuir 2013, 29, 15076-15082.
[16]
Djafari, J.; Fernández-Lodeiro, A.; García-Lojo, D.; Fernández-Lodeiro, J.; Rodríguez-González, B.; Pastoriza-Santos, I.; Pérez-Juste, J.; Capelo, J. L.; Lodeiro, C. Iron(II) as a green reducing agent in gold nanoparticle synthesis. ACS Sustainable Chem. Eng. 2019, 7, 8295-8302.
[17]
Fernández-Lodeiro, A.; Djafari, J.; Lopez-Tejedor, D.; Perez-Rizquez, C.; Rodríguez-Gonzalez, B.; Capelo, J. L.; Palomo, J. M.; Lodeiro, C.; Fernández-Lodeiro, J. Highly accessible aqueous synthesis of well-dispersed dendrimer type platinum nanoparticles and their catalytic applications. Nano Res. 2019, 12, 1083-1092.
[18]
Wen, Y. H.; Zhang, H. M.; Qian, P.; Zhou, H. T.; Zhao, P.; Yi, B. L.; Yang, Y. S. Studies on iron (Fe3+/Fe2+)-complex/bromine (Br2/Br-) redox flow cell in sodium acetate solution. J. Electrochem. Soc. 2006, 153, A929-A934.
[19]
Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 2006, 6, 833-838.
[20]
Sugawa, K.; Tahara, H.; Yamashita, A.; Otsuki, J.; Sagara, T.; Harumoto, T.; Yanagida, S. Refractive index susceptibility of the plasmonic palladium nanoparticle: Potential as the third plasmonic sensing material. ACS Nano 2015, 9, 1895-1904.
[21]
Kang, S.; Shin, W.; Kang, K.; Choi, M. H.; Kim, Y. J.; Kim, Y. K.; Min, D. H.; Jang, H. Revisiting of Pd nanoparticles in cancer treatment: All-round excellence of porous Pd nanoplates in gene-thermo combinational therapy. ACS Appl. Mater. Interfaces 2018, 10, 13819-13828.
[22]
Rodal-Cedeira, S.; Montes-Garcíia, V.; Polavarapu, L.; Solís, D. M.; Heidari, H.; La Porta, A.; Angiola, M.; Martucci, A.; Taboada, J. M.; Obelleiro, F. et al. Plasmonic Au@Pd nanorods with boosted refractive index susceptibility and SERS efficiency: A multifunctional platform for hydrogen sensing and monitoring of catalytic reactions. Chem. Mater. 2016, 28, 9169-9180.
[23]
Zhu, X. Z.; Jia, H. L.; Zhu, X. M.; Cheng, S.; Zhuo, X. L.; Qin, F.; Yang, Z.; Wang, J. F. Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity. Adv. Funct. Mater. 2017, 27, 1700016.
[24]
Gurunatha, K. L.; Fournier, A. C.; Urvoas, A.; Valerio-Lepiniec, M.; Marchi, V.; Minard, P.; Dujardin, E. Nanoparticles self-assembly driven by high affinity repeat protein pairing. ACS Nano 2016, 10, 3176-3185.
Nano Research
Pages 2351-2355
Cite this article:
Fernández-Lodeiro C, Fernández-Lodeiro J, Carbó-Argibay E, et al. The versatility of Fe(II) in the synthesis of uniform citrate-stabilized plasmonic nanoparticles with tunable size at room temperature. Nano Research, 2020, 13(9): 2351-2355. https://doi.org/10.1007/s12274-020-2854-1
Topics:

785

Views

12

Crossref

N/A

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 15 January 2020
Revised: 29 April 2020
Accepted: 05 May 2020
Published: 29 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return