AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Periodic surface functional group density on graphene via laser-induced substrate patterning at Si/SiO2 interface

Karolina A. Drogowska-Horna1,§Inam Mirza2,§Alvaro Rodriguez1,§Petr Kovaříček1( )Juraj Sládek2,3Thibault J.-Y. Derrien2Mindaugas Gedvilas4Gediminas Račiukaitis4Otakar Frank1Nadezhda M. Bulgakova2Martin Kalbáč1( )
J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, Za Radnicí 828, 252 41 Dolní Břežany, Czech Republic
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, 115 19, Czech Republic
Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-023000, Vilnius, Lithuania

§ Karolina A. Drogowska-Horna, Inam Mirza, and Alvaro Rodriguez contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Controlling the spatial distribution of functional groups on two-dimensional (2D) materials on a micrometer scale and below represents a fascinating opportunity to achieve anisotropic (opto)electronic properties of these materials. Periodic patterns of covalent functionalization can lead to periodic potentials in the monolayer; however, creating such superstructures is very challenging. Here, we describe an original approach to the periodic functionalization of graphene induced by substrate patterning using a pulsed laser. Laser-induced periodic surface structures (LIPSS) are produced on silicon wafers with thermally-grown oxide layers. The irradiation conditions for the formation of LIPSS confined at the SiO2/Si interface have been unravelled. LIPSS imprint their periodicity to the reactivity of the monolayer graphene placed on the substrate via modulation of its local doping level. This method is clean, straightforward and scalable with high spatial resolution.

Electronic Supplementary Material

Download File(s)
12274_2020_2852_MOESM1_ESM.pdf (4.7 MB)

References

[1]
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.
[2]
Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652-655.
[3]
Kostarelos, K.; Novoselov, K. S. Graphene devices for life. Nat. Nanotechnol. 2014, 9, 744-745.
[4]
Criado, A.; Melchionna, M.; Marchesan, S.; Prato, M. The covalent functionalization of graphene on substrates. Angew. Chem., Int. Ed. 2015, 54, 10734-10750.
[5]
Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130, 16201-16206.
[6]
Ferreira, F. V.; De Simone Cividanes, L.; Brito, F. S.; de Menezes, B. R. C.; Franceschi, W.; Simonetti, E. A. N.; Thim, G. P. Functionalizing Graphene and Carbon Nanotubes: A Review; Cham: Springer, 2016.
[7]
Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156-6214.
[8]
Zhao, G. K.; Li, X. M.; Huang, M. R.; Zhen, Z.; Zhong, Y. J.; Chen, Q.; Zhao, X. L.; He, Y. J.; Hu, R. R.; Yang, T. T. et al. The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 2017, 46, 4417-4449.
[9]
Bottari, G.; Herranz, M. Á.; Wibmer, L.; Volland, M.; Rodríguez-Pérez, L.; Guldi, D. M.; Hirsch, A.; Martín, N.; D’Souza, F.; Torres, T. Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev. 2017, 46, 4464-4500.
[10]
Valenta, L.; Kovaříček, P.; Valeš, V.; Bastl, Z.; Drogowska, K. A.; Verhagen, T. A.; Cibulka, R.; Kalbáč, M. Spatially resolved covalent functionalization patterns on graphene. Angew. Chem., Int. Ed. 2019, 58, 1324-1328.
[11]
Navarro, J. J.; Leret, S.; Calleja, F.; Stradi, D.; Black, A.; Bernardo-Gavito, R.; Garnica, M.; Granados, D.; Vázquez de Parga, A. L.; Pérez, E. M. et al. Organic covalent patterning of nanostructured graphene with selectivity at the atomic level. Nano Lett. 2016, 16, 355-361.
[12]
Balog, R.; Andersen, M.; Jørgensen, B.; Sljivancanin, Z.; Hammer, B.; Baraldi, A.; Larciprete, R.; Hofmann, P.; Hornekær, L.; Lizzit, S. Controlling hydrogenation of graphene on Ir(111). ACS Nano 2013, 7, 3823-3832.
[13]
Balog, R.; Jørgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Lægsgaard, E.; Baraldi, A.; Lizzit, S. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315-319.
[14]
Gobbi, M.; Bonacchi, S.; Lian, J. X.; Liu, Y.; Wang, X. Y.; Stoeckel, M. A.; Squillaci, M. A.; D’Avino, G.; Narita, A.; Müllen, K. et al. Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene. Nat. Commun. 2017, 8, 14767.
[15]
Zhou, X. B.; Qi, Y.; Shi, J. P.; Niu, J. J.; Liu, M. X.; Zhang, G. X.; Li, Q. C.; Zhang, Z. P.; Hong, M.; Ji, Q. Q. et al. Modulating the electronic properties of monolayer graphene using a periodic quasi-one-dimensional potential generated by hex-reconstructed Au(001). ACS Nano 2016, 10, 7550-7557.
[16]
Puddy, R. K.; Scard, P. H.; Tyndall, D.; Connolly, M. R.; Smith, C. G.; Jones, G. A. C.; Lombardo, A.; Ferrari, A. C.; Buitelaar, M. R. Atomic force microscope nanolithography of graphene: Cuts, pseudocuts, and tip current measurements. Appl. Phys. Lett. 2011, 98, 133120.
[17]
Ye, D.; Wu, S. Q.; Yu, Y.; Liu, L.; Lu, X. P.; Wu, Y. Patterned graphene functionalization via mask-free scanning of micro-plasma jet under ambient condition. Appl. Phys. Lett. 2014, 104, 103105.
[18]
Stubrov, Y.; Nikolenko, A.; Strelchuk, V.; Nedilko, S.; Chornii, V. Structural modification of single-layer graphene under laser irradiation featured by micro-Raman spectroscopy. Nanoscale Res. Lett. 2017, 12, 297.
[19]
Bog, U.; de los Santos Pereira, A.; Mueller, S. L.; Havenridge, S.; Parrillo, V.; Bruns, M.; Holmes, A. E.; Rodriguez-Emmenegger, C.; Fuchs, H.; Hirtz, M. Clickable antifouling polymer brushes for polymer pen lithography. ACS Appl. Mater. Interfaces 2017, 9, 12109-12117.
[20]
Hirtz, M.; Varey, S.; Fuchs, H.; Vijayaraghavan, A. Attoliter chemistry for nanoscale functionalization of graphene. ACS Appl. Mater. Interfaces 2016, 8, 33371-33376.
[21]
Wang, W. M.; Stander, N.; Stoltenberg, R. M.; Goldhaber-Gordon, D.; Bao, Z. N. Dip-pen nanolithography of electrical contacts to single graphene flakes. ACS Nano 2010, 4, 6409-6416.
[22]
Piner, R. D.; Zhu, J.; Xu, F.; Hong, S. H.; Mirkin, C. A. “Dip-pen” nanolithography. Science 1999, 283, 661-663.
[23]
Jaschke, M.; Butt, H. J. Deposition of organic material by the tip of a scanning force microscope. Langmuir 1995, 11, 1061-1064.
[24]
Sun, Z. Z.; Pint, C. L.; Marcano, D. C.; Zhang, C. G.; Yao, J.; Ruan, G. D.; Yan, Z.; Zhu, Y.; Hauge, R. H.; Tour, J. M. Towards hybrid superlattices in graphene. Nat. Commun. 2011, 2, 559.
[25]
Hallam, T.; Berner, N. C.; Yim, C.; Duesberg, G. S. Strain, bubbles, dirt, and folds: A study of graphene polymer-assisted transfer. Adv. Mater. Interfaces 2014, 1, 1400115.
[26]
Wang, Q. H.; Jin, Z.; Kim, K. K.; Hilmer, A. J.; Paulus, G. L. C.; Shih, C. J.; Ham, M. H.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 2012, 4, 724-732.
[27]
Tozzini, V.; Pellegrini, V. Reversible hydrogen storage by controlled buckling of graphene layers. J. Phys. Chem. C 2011, 115, 25523-25528.
[28]
Wu, Q. Z.; Wu, Y. P.; Hao, Y. F.; Geng, J. X.; Charlton, M.; Chen, S. S.; Ren, Y. J.; Ji, H. X.; Li, H. F.; Boukhvalov, D. W. et al. Selective surface functionalization at regions of high local curvature in graphene. Chem. Commun. 2013, 49, 677-679.
[29]
Plšek, J.; Kovaříček, P.; Valeš, V.; Kalbáč, M. Tuning the reactivity of graphene by surface phase orientation. Chem. -Eur. J. 2017, 23, 1839-1845.
[30]
Costa, S. D.; Ek Weis, J.; Frank, O.; Kalbac, M. Effect of layer number and layer stacking registry on the formation and quantification of defects in graphene. Carbon 2016, 98, 592-598.
[31]
Pacakova, B.; Vejpravova, J.; Repko, A.; Mantlikova, A.; Kalbac, M. Formation of wrinkles on graphene induced by nanoparticles: Atomic force microscopy study. Carbon 2015, 95, 573-579.
[32]
Vejpravova, J.; Pacakova, B.; Endres, J.; Mantlikova, A.; Verhagen, T.; Vales, V.; Frank, O.; Kalbac, M. Graphene wrinkling induced by monodisperse nanoparticles: Facile control and quantification. Sci. Rep. 2015, 5, 15061.
[33]
Valeš, V.; Verhagen, T.; Vejpravová, J.; Frank, O.; Kalbáč, M. Addressing asymmetry of the charge and strain in a two-dimensional fullerene peapod. Nanoscale 2016, 8, 735-740.
[34]
Birnbaum, M. Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 1965, 36, 3688-3689.
[35]
Bonse, J.; Krüger, J.; Höhm, S.; Rosenfeld, A. Femtosecond laser-induced periodic surface structures. J. Laser Appl. 2012, 24, 042006.
[36]
Rebollar, E.; Rueda, D. R.; Martín-Fabiani, I.; Rodríguez-Rodríguez, Á.; García-Gutiérrez, M. C.; Portale, G.; Castillejo, M.; Ezquerra, T. A. In situ monitoring of laser-induced periodic surface structures formation on polymer films by grazing incidence small-angle x-ray scattering. Langmuir 2015, 31, 3973-3981.
[37]
Bonse, J.; Höhm, S.; Kirner, S. V.; Rosenfeld, A.; Krüger, J. Laser-induced periodic surface structures—a scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 9000615.
[38]
Maragkaki, S.; Derrien, T. J. Y.; Levy, Y.; Bulgakova, N. M.; Ostendorf, A.; Gurevich, E. L. Wavelength dependence of picosecond laser-induced periodic surface structures on copper. Appl. Surf. Sci. 2017, 417, 88-92.
[39]
Gnilitskyi, I.; Gruzdev, V.; Bulgakova, N. M.; Mocek, T.; Orazi, L. Mechanisms of high-regularity periodic structuring of silicon surface by sub-MHz repetition rate ultrashort laser pulses. Appl. Phys. Lett. 2016, 109, 143101.
[40]
Rodríguez-Rodríguez, Á.; Gutiérrez-Fernández, E.; García-Gutiérrez, M. C.; Nogales, A.; Ezquerra, T. A.; Rebollar, E. Synergistic effect of fullerenes on the laser-induced periodic surface structuring of poly(3-hexyl thiophene). Polymers 2019, 11, 190.
[41]
Kasischke, M.; Maragkaki, S.; Volz, S.; Ostendorf, A.; Gurevich, E. L. Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses. Appl. Surf. Sci. 2018, 445, 197-203.
[42]
Mortazavi, S.; Mollabashi, M.; Barri, R.; Gundlach, L.; Jones, K.; Xiao, J. Q.; Opila, R. L.; Shah, S. I. Ti: Sapphire laser irradiation of graphene oxide film in order to tune its structural, chemical and electrical properties: Patterning and characterizations. Appl. Surf. Sci. 2020, 500, 144053.
[43]
Beltaos, A.; Kovačević, A. G.; Matković, A.; Ralević, U.; Savić-Šević, S.; Jovanović, D.; Jelenković, B. M.; Gajić, R. Femtosecond laser induced periodic surface structures on multi-layer graphene. J. Appl. Phys. 2014, 116, 204306.
[44]
Jiang, H. B.; Zhang, Y. L.; Liu, Y.; Fu, X. Y.; Li, Y. F.; Liu, Y. Q.; Li, C. H.; Sun, H. B. Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured cu foil. Laser Photonics Rev. 2016, 10, 441-450.
[45]
Jiang, H. B.; Zhang, Y. L.; Han, D. D.; Xia, H.; Feng, J.; Chen, Q. D.; Hong, Z. R.; Sun, H. B. Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Adv. Funct. Mater. 2014, 24, 4595-4602.
[46]
Kovalska, E.; Pavlov, I.; Deminskyi, P.; Baldycheva, A.; Ilday, F. Ö.; Kocabas, C. NLL-assisted multilayer graphene patterning. ACS Omega 2018, 3, 1546-1554.
[47]
Lee, J. E.; Ahn, G.; Shim, J.; Lee, Y. S.; Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 2012, 3, 1024.
[48]
Liu, J. M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196-198.
[49]
Kalbac, M.; Frank, O.; Kavan, L. The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon 2012, 50, 3682-3687.
[50]
Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cen. Eur. J. Phys. 2012, 10, 181-188.
[51]
Mirza, I.; Bulgakova, N. M.; Tomáštík, J.; Michálek, V.; Haderka, O.; Fekete, L.; Mocek, T. Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown. Sci. Rep. 2016, 6, 39133.
[52]
Sipe, J. E.; Young, J. F.; Preston, J. S.; van Driel, H. M. Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 1983, 27, 1141-1154.
[53]
Levy, Y.; Derrien, T. J. Y.; Bulgakova, N. M.; Gurevich, E. L.; Mocek, T. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors. Appl. Surf. Sci. 2016, 374, 157-164.
[54]
Brückner, R. Properties and structure of vitreous silica. I. J. Non-Cryst. Solids 1970, 5, 123-175.
[55]
Huang, J.; Jiang, L.; Li, X. W.; Wei, Q. S.; Wang, Z. P.; Li, B. H.; Huang, L. L.; Wang, A. D.; Wang, Z.; Li, M. et al. Cylindrically focused nonablative femtosecond laser processing of long-range uniform periodic surface structures with tunable diffraction efficiency. Adv. Opt. Mater. 2019, 7, 1900706.
[56]
Thompson, M. O.; Mayer, J. W.; Cullis, A. G.; Webber, H. C.; Chew, N. G.; Poate, J. M.; Jacobson, D. C. Silicon melt, regrowth, and amorphization velocities during pulsed laser irradiation. Phys. Rev. Lett. 1983, 50, 896-899.
[57]
Derrien, T. J. Y.; Bulgakova, N. M. Modeling of silicon in femtosecond laser-induced modification regimes: Accounting for Ambipolar diffusion. In Proceedings SPIE 10228, Nonlinear Optics and Applications X, Prague, Czech Republic, 2017, pp102280E.
[58]
Tu, Y. H.; Tersoff, J. Structure and energetics of the Si-SiO2 interface. Phys. Rev. Lett. 2000, 84, 4393-4396.
[59]
Shugaev, M. V.; Gnilitskyi, I.; Bulgakova, N. M.; Zhigilei, L. V. Mechanism of single-pulse ablative generation of laser-induced periodic surface structures. Phys. Rev. B 2017, 96, 205429.
[60]
Sokolowski-Tinten, K.; Ziegler, W.; von der Linde, D.; Siegal, M. P.; Overmyer, D. L. Short-pulse-laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon films. Appl. Phys. Lett. 2005, 86, 121911.
[61]
Bousa, M.; Anagnostopoulos, G.; del Corro, E.; Drogowska, K.; Pekarek, J.; Kavan, L.; Kalbac, M.; Parthenios, J.; Papagelis, K.; Galiotis, C.; Frank, O. Stress and charge transfer in uniaxially strained CVD graphene. Phys. Status Solidi B 2016, 253, 2355-2361.
[62]
Jorio, A.; Dresselhaus, M.; Saito, R.; Dresselhaus, G. F. Raman Spectroscopy in Graphene Related Systems; Wiley: Weinheim, 2011.
[63]
Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592-1597.
[64]
Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190-3196.
[65]
Kovaříček, P.; Vrkoslav, V.; Plšek, J.; Bastl, Z.; Fridrichová, M.; Drogowska, K.; Kalbáč, M. Extended characterization methods for covalent functionalization of graphene on copper. Carbon 2017, 118, 200-207.
[66]
Menanteau, T.; Dias, M.; Levillain, E.; Downard, A. J.; Breton, T. Electrografting via diazonium chemistry: The key role of the aryl substituent in the layer growth mechanism. J. Phys. Chem. C 2016, 120, 4423-4429.
[67]
Bouša, D.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Šturala, J.; Pumera, M.; Sofer, Z. Mesomeric effects of graphene modified with diazonium salts: Substituent type and position influence its properties. Chem.—Eur. J. 2015, 21, 17728-17738.
[68]
Sampathkumar, K.; Diez-Cabanes, V.; Kovaricek, P.; del Corro, E.; Bouša, M.; Hošek, J.; Kalbac, M.; Frank, O. On the suitability of Raman spectroscopy to monitor the degree of graphene functionalization by diazonium salts. J. Phys. Chem. C 2019, 123, 22397-22402.
Nano Research
Pages 2332-2339
Cite this article:
Drogowska-Horna KA, Mirza I, Rodriguez A, et al. Periodic surface functional group density on graphene via laser-induced substrate patterning at Si/SiO2 interface. Nano Research, 2020, 13(9): 2332-2339. https://doi.org/10.1007/s12274-020-2852-3
Topics:

856

Views

17

Crossref

N/A

Web of Science

17

Scopus

1

CSCD

Altmetrics

Received: 21 February 2020
Revised: 23 April 2020
Accepted: 04 May 2020
Published: 16 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return