Journal Home > Volume 13 , Issue 8

Biomimetic nanozymes possessing natural enzyme-mimetic activities have been extensively applied in nanocatalytic tumor therapy. However, engineering hybrid biomimetic nanozymes to achieve superior nanozyme activity remained to be an intractable challenge in hypoxic tumors. Herein, a rod-like biomimetic hybrid inorganic MnO2-Au nanozymes are developed, where MnO2 and ultrasmall Au nanoparticles (NPs) are successively deposited on the mesoporous silica nanorod to cooperatively improve the O2 content and thermal sensitivity of hypoxic solid tumors guided by multi-modal imaging. Under the catalyzing of MnO2, the intratumoral H2O2 is decomposed to greatly accelerate O2 generation, which could boost the curative effect of radiation therapy (RT) and further enhance the Au-catalyzed glucose oxidation. Mutually, the Au NPs can steadily and efficiently catalyze the oxidation of glucose in harsh tumor microenvironment, thus sensitizing tumor cells to thermal ablation for mild photothermal therapy and further promoting the catalytic efficiency of MnO2 with the self-supplied H2O2/H+. As a result, this mutual-reinforcing cycle can endow the nanoplatform with accelerated O2 generation, thus alleviating hypoxic environment and further boosting RT effect. Furthermore, acute glucose consuming can induce downregulation expression of heat shock protein (HSP), achieving starvation-promoted mild photothermal therapy. This synthesized hybrid nanozymes proves to be a versatile theranostic agent for nanocatalytic cancer therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rod-shape inorganic biomimetic mutual-reinforcing MnO2-Au nanozymes for catalysis-enhanced hypoxic tumor therapy

Show Author's information Lifang Yang1Chuchu Ren1Min Xu1Yilin Song1Qianglan Lu1Yule Wang2,3Yan Zhu2,3Xinxing Wang4( )Nan Li1( )
Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, 220 Dongting Road, TEDA, Tianjin 300457, China
Tianjin Institute of Environmental and Operational Medicine, 1 Dali Road, Heping District, Tianjin 300050, China

Abstract

Biomimetic nanozymes possessing natural enzyme-mimetic activities have been extensively applied in nanocatalytic tumor therapy. However, engineering hybrid biomimetic nanozymes to achieve superior nanozyme activity remained to be an intractable challenge in hypoxic tumors. Herein, a rod-like biomimetic hybrid inorganic MnO2-Au nanozymes are developed, where MnO2 and ultrasmall Au nanoparticles (NPs) are successively deposited on the mesoporous silica nanorod to cooperatively improve the O2 content and thermal sensitivity of hypoxic solid tumors guided by multi-modal imaging. Under the catalyzing of MnO2, the intratumoral H2O2 is decomposed to greatly accelerate O2 generation, which could boost the curative effect of radiation therapy (RT) and further enhance the Au-catalyzed glucose oxidation. Mutually, the Au NPs can steadily and efficiently catalyze the oxidation of glucose in harsh tumor microenvironment, thus sensitizing tumor cells to thermal ablation for mild photothermal therapy and further promoting the catalytic efficiency of MnO2 with the self-supplied H2O2/H+. As a result, this mutual-reinforcing cycle can endow the nanoplatform with accelerated O2 generation, thus alleviating hypoxic environment and further boosting RT effect. Furthermore, acute glucose consuming can induce downregulation expression of heat shock protein (HSP), achieving starvation-promoted mild photothermal therapy. This synthesized hybrid nanozymes proves to be a versatile theranostic agent for nanocatalytic cancer therapy.

Keywords: hypoxia, nanozyme, self-supplied, mutual-reinforcing, catalysis-enhanced therapy

References(44)

[1]
Zhang, C. Y.; Yan, L.; Gu, Z. J.; Zhao, Y. L. Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy. Chem. Sci. 2019, 10, 6932-6943.
[2]
Liu, L. H.; Zhang, Y. H.; Qiu, W. X.; Zhang, L.; Gao, F.; Li, B.; Xu, L.; Fan, J. X.; Li, Z. H.; Zhang, X. Z. Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O2 self-sufficient nanoplatform. Small 2017, 13, 1701621.
[3]
Gao, M.; Liang, C.; Song, X. J.; Chen, Q.; Jin, Q. T.; Wang, C.; Liu, Z. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater. 2017, 29, 1701429.
[4]
Chen, C.; Ni, X.; Jia, S. R.; Liang, Y.; Wu, X. L.; Kong, D. L.; Ding, D. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater. 2019, 31, 1904914.
[5]
Chen, C.; Ou, H. L.; Liu, R. H.; Ding, D. Regulating the photophysical property of organic/polymer optical agents for promoted cancer phototheranostics. Adv. Mater. 2020, 32, 1806331.
[6]
Wang, H.; Mu, X. Y.; He, H.; Zhang, X. D. Cancer radiosensitizers. Trends Pharmacol. Sci. 2018, 39, 24-48.
[7]
Jiang, W.; Li, Q.; Xiao, L.; Dou, J. X.; Liu, Y.; Yu, W. H.; Ma, Y. C.; Li, X. Q.; You, Y. Z.; Tong, Z. T. et al. Hierarchical multiplexing nanodroplets for imaging-guided cancer radiotherapy via DNA damage enhancement and concomitant DNA repair prevention. ACS Nano 2018, 12, 5684-5698.
[8]
Jiang, W.; Li, Q.; Zhu, Z. C.; Wang, Q.; Dou, J. X.; Zhao, Y. M.; Lv, W. F.; Zhong, F.; Yao, Y. D.; Zhang, G. Q. et al. Cancer chemoradiotherapy duo: Nano-enabled targeting of DNA lesion formation and DNA damage response. ACS Appl. Mater. Interfaces 2018, 10, 35734-35744.
[9]
Dang, J. J.; He, H.; Chen, D. L.; Yin, L. C. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater. Sci. 2017, 5, 1500-1511.
[10]
Askoxylakis, V.; Millonig, G.; Wirkner, U.; Schwager, C.; Rana, S.; Altmann, A.; Haberkorn, U.; Debus, J.; Mueller, S.; Huber, P. E. Investigation of tumor hypoxia using a two-enzyme system for in vitro generation of oxygen deficiency. Radiat. Oncol. 2011, 6, 35.
[11]
Zhao, C. Y.; Tong, Y. J.; Li, X. L.; Shao, L. H.; Chen, L.; Lu, J. Q.; Deng, X. W.; Wang, X.; Wu, Y. Photosensitive nanoparticles combining vascular-independent intratumor distribution and on-demand oxygen-depot delivery for enhanced cancer photodynamic therapy. Small 2018, 14, 1703045.
[12]
Zhou, Z. G.; Zhang, B. L.; Wang, S. S.; Zai, W. J.; Yuan, A. H.; Hu, Y. Q.; Wu, J. H. Perfluorocarbon nanoparticles mediated platelet blocking disrupt vascular barriers to improve the efficacy of oxygen-sensitive antitumor drugs. Small 2018, 14, 1801694.
[13]
Jansman, M. M. T.; Hosta-Rigau, L. Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers. Adv. Colloid Interface Sci. 2018, 260, 65-84.
[14]
Zhang, W. T.; Li, S. H.; Liu, X. N.; Yang, C. Y.; Hu, N.; Dou, L. N.; Zhao, B. X.; Zhang, Q. Y.; Suo, Y. R.; Wang, J. L. Oxygen-generating MnO2 nanodots-anchored versatile nanoplatform for combined chemo-photodynamic therapy in hypoxic cancer. Adv. Funct. Mater. 2018, 28, 1706375.
[15]
Zhu, P.; Chen, Y.; Shi, J. L. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano 2018, 12, 3780-3795.
[16]
Cheng, X. W.; Huang, L.; Yang, X. Y.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y. H. Rational design of a stable peroxidase mimic for colorimetric detection of H2O2 and glucose: A synergistic CeO2/zeolite Y nanocomposite. J. Colloid Interface Sci. 2019, 535, 425-435.
[17]
Tang, Z. M.; Zhang, H. L.; Liu, Y. Y.; Ni, D. L.; Zhang, H.; Zhang, J. W.; Yao, Z. W.; He, M. Y.; Shi, J. L.; Bu, W. B. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater. 2017, 29, 1701683.
[18]
Gao, S. S.; Lin, H.; Zhang, H. X.; Yao, H. L.; Chen, Y.; Shi. J. L. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 2019, 6, 1801733.
[19]
Zhang, L.; Wan, S. S.; Li, C. X.; Xu, L.; Cheng, H.; Zhang, X. Z. An adenosine triphosphate-responsive autocatalytic fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion. Nano Lett. 2018, 18, 7609-7618.
[20]
Zhang, R.; Feng, L. Z.; Dong, Z. L.; Wang, L.; Liang, C.; Chen, J. W.; Ma, Q. X.; Zhang, R.; Chen, Q.; Wang, Y. C. et al. Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy. Biomaterials 2018, 162, 123-131.
[21]
Chen, W. H.; Luo, G. F.; Vázquez-González, M.; Cazelles, R.; Sohn, Y. S.; Nechushtai, R.; Mandel, Y.; Willner, I. Glucose-responsive metal-organic-framework nanoparticles act as “smart” sense-and-treat carriers. ACS Nano 2018, 12, 7538-7545.
[22]
Sun, H. J.; Zhou, Y.; Ren, J. S.; Qu, X. G. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angew. Chem., Int. Ed. 2018, 57, 9224-9237.
[23]
Kotov, N. A. Inorganic nanoparticles as protein mimics. Science 2010, 330, 188-189.
[24]
Li, S. S.; Shang, L.; Xu, B. L.; Wang, S. H.; Gu, K.; Wu, Q. Y.; Sun, Y.; Zhang, Q. H.; Yang, H. L.; Zhang, F. R. et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew. Chem. 2019, 131, 12754-12761.
[25]
Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097-1105.
[26]
Wei, H.; Wang. E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060-6093.
[27]
Qiana, X. Q.; Zhang, J.; Gu, Z.; Chen, Y. Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials 2019, 211, 1-13.
[28]
Garg, B.; Bisht, T.; Ling, Y. C. Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: An overview. Molecules 2015, 20, 14155-14190.
[29]
da Silva, A. G. M.; Rodrigues, T. S.; Candido, E. G.; de Freitas, I. C.; da Silva, A. H. M.; Fajardo, H. V.; Balzer, R.; Gomes, J. F.; Assaf, J. M.; de Oliveira, D. C. et al. Combining active phase and support optimization in MnO2-Au nanoflowers: Enabling high activities towards green oxidations. J. Colloid Interface Sci. 2018, 530, 282-291.
[30]
Luo, W. J.; Zhu, C. F.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. H. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 2010, 12, 7451-7458.
[31]
Huang, X. L.; Teng, X.; Chen, D.; Tang, F. Q.; He, J. Q. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010, 31, 438-448.
[32]
Yang, H. R.; Chen, Z.; Zhang, L.; Yung, W. Y.; Leung, K. C. F.; Chan, H. Y. E.; Choi, C. H. J. Mechanism for the cellular uptake of targeted gold nanorods of defined aspect ratios. Small 2016, 12, 5178-5189.
[33]
Tsai, C.; Hung, Y.; Chou, Y. H.; Huang, D. M.; Hsiao, J. K.; Chang, C.; Chen, Y. C.; Mou, C. Y. High-contrast paramagnetic fluorescent mesoporous silica nanorods as a multifunctional cell-imaging probe. Small 2008, 4, 186-191.
[34]
Du, C.; He, S. J.; Gao, X. H.; Chen, W. Hierarchical Cu@MnO2 core-shell Nanowires: A nonprecious-metal catalyst with an excellent catalytic activity toward the reduction of 4-nitrophenol. Chem. Cat. Chem. 2016, 8, 2885-2889.
[35]
Sun, D.; Wageh, S.; Al-Ghamdi, A. A.; Le, Y.; Yu, J. G.; Jiang, C. J. Pt/C@MnO2 composite hierarchical hollow microspheres for catalytic formaldehyde decomposition at room temperature. Appl. Surf. Sci. 2019, 466, 301-308.
[36]
da Silva, A. G. M.; Kisukuri, C. M.; Rodrigues, T. S.; Candido, E. G.; de Freitas, I. C.; da Silva, A. H. M.; Assaf, J. M.; Oliveira, D. C.; Andrade, L. H.; Camargo, P. H. C. MnO2 nanowires decorated with Au ultrasmall nanoparticles for the green oxidation of silanes and hydrogen production under ultralow loadings. Appl. Catal. B: Environ. 2016, 184, 35-43.
[37]
Zhou, J.; Li, M. H.; Hou, Y. H.; Luo, Z.; Chen, Q. F.; Cao, H. X.; Huo, R. L.; Xue, C. C.; Sutrisno, L.; Hao, L. et al. Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy. ACS Nano 2018, 12, 2858-2872.
[38]
Chen, W. H.; Luo, G. F.; Lei, Q.; Hong, S.; Qiu, W. X.; Liu, L. H.; Cheng, S. X.; Zhang, X. Z. Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy. ACS Nano 2017, 11, 1419-1431.
[39]
Ni, C.; Zhang, X. Y.; Duan, X. C.; Zheng, H. L.; Xue, X. S.; Ding, D. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 2019, 19, 318-330.
[40]
Zhao, R. F.; Han, X. X.; Li, Y. Y.; Wang, H.; Ji, T. J.; Zhao, Y. L.; Nie, G. J. Photothermal effect enhanced cascade-targeting strategy for improved pancreatic cancer therapy by gold nanoshell@mesoporous silica nanorod. ACS Nano 2017, 11, 8103-8113.
[41]
Huang, Z. M.; Cai, Q. Y.; Ding, D. C.; Ge, J.; Hu, Y. L.; Yang, J.; Zhang, L.; Li, Z. H. A facile label-free colorimetric method for highly sensitive glutathione detection by using manganese dioxide nanosheets. Sens. Actuators B Chem. 2017, 242, 355-361.
[42]
Huang, M.; Zhang, Y. X.; Li, F.; Wang, Z. C.; Alamusi; Hu, N.; Wen, Z. Y.; Liu, Q. Merging of kirkendall growth and ostwald ripening: CuO@MnO2 core-shell architectures for asymmetric supercapacitors. Sci. Rep. 2015, 4, 4518.
[43]
Chen, Q.; Li, K. G.; Wen, S. H.; Liu, H.; Peng, C.; Cai, H. D.; Shen, M. W.; Zhang, G. X.; Shi, X. Y. Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 2013, 34, 5200-5209.
[44]
Yamaoka, K.; Nakagawa, T.; Uno, T. Statistical moments in pharmacokinetics. J. Pharmacokinet. Biopharm. 1978, 6, 547-558.
File
12274_2020_2844_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 January 2020
Revised: 30 April 2020
Accepted: 01 May 2020
Published: 05 August 2020
Issue date: August 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by Young Elite Scientists Sponsorship Program by Tianjin (No. 0701320001). And this work was partially supported by the grants of the National Natural Science Foundation of China (Nos. 31971106 and 81372124).

Return